您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 2017年八年级数学上第十四章整式的乘法与因式分解学案人教版
2017年八年级数学上第十四章整式的乘法与因式分解学案(人教版)第十四章整式的乘法与因式分解14.1整式的乘法14.1.1同底数幂的乘法1.掌握同底数幂的乘法的概念及其运算性质,并能运用其熟练地进行运算;2.能利用同底数幂的乘法法则解决简单的实际问题.重点:同底数幂乘法的运算性质.难点:同底数幂乘法的运算性质的灵活运用.一、自学指导自学1:自学课本P95-96页“问题1,探究及例1”,掌握同底数幂的乘法法则,完成下列填空.(7分钟)1.根据乘方的意义填空:(-a)2=a2,(-a)3=-a3;(m-n)2=(n-m)2;(a-b)3=-(b-a)3.2.根据幂的意义解答:52×53=5×5×5×5×5=55;32×34=3×3×3×3×3×3=36;a3a4=(aaa)(aaaa)=a7;aman=am+n(m,n都是正整数);amanap=am+n+p(m,n,p都是正整数).总结归纳:同底数幂相乘,底数不变,指数相加.二、自学检测:学生自主完成,小组内展示、点评,教师巡视.(5分钟)1.课本P96页练习题.2.计算:(1)10102104;(2)x2+ax2a+1;(3)(-x)2(-x)3;(4)(a+1)(a+1)2.解:(1)10102104=101+2+4=107;(2)x2+ax2a+1=x(2+a)+(2a+1)=x3a+3;(3)(-x)2(-x)3=(-x)2+3=(-x)5=-x5;(4)(a+1)(a+1)2=(a+1)1+2=(a+1)3.点拨精讲:第(1)题中第一个因式的指数为1,第(4)题(a+2)可以看作一个整体.小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(10分钟)探究1计算:(1)(-x)4x10;(2)-x4(-x)8;(3)1000×10a×10a+1;(4)(x-y)(y-x)3.解:(1)(-x)4x10=x4x10=x14;(2)-x4(-x)8=-x4x8=-x12;(3)1000×10a×10a+1=10310a10a+1=102a+4;(4)(x-y)(y-x)3=-(y-x)(y-x)3=-(y-x)4.点拨精讲:应运用化归思想将之化为同底数的幂相乘,运算时要先确定符号.探究2已知am=3,an=5(m,n为整数),求am+n的值.解:am+n=aman=3×5=15点拨精讲:一般逆用公式有时可使计算简便.学生独立确定解题思路,小组内交流,上台展示并讲解思路.(8分钟)1.计算:(1)aa2a4;(2)xx2+x2x;(3)(-p)3(-p)2+(-p)4p;(4)(a+b)2m(a+b)m+1;(5)(x-y)3(x-y)2(y-x);(6)(-x)4x7(-x)3.解:(1)aa2a4=a7;(2)xx2+x2x=x3+x3=2x3;(3)(-p)3(-p)2+(-p)4p=(-p)5+p4p=-p5+p5=0;(4)(a+b)2m(a+b)m+1=(a+b)3m+1;(5)(x-y)3(x-y)2(y-x)=-(x-y)3(x-y)2(x-y)=-(x-y)6;(6)(-x)4x7(-x)3=x4x7(-x3)=-x点拨精讲:注意符号和运算顺序,第1题中a的指数1千万别漏掉了.2.已知3a+b3a-b=9,求a的值.解:∵3a+b3a-b=32a=9,∴32a=32,∴2a=2,即a=1.点拨精讲:左边进行同底数幂的运算后再对比指数.3.已知am=3,am+n=6,求an的值.解:∵am+n=aman=6,an=3,∴3×an=6,∴an=2.(3分钟)1.化归思想方法(也叫做转化思想方法)是人们学习、生活、生产中的常用方法.遇到新问题时,可把新问题转化为熟知的问题,例如(-a)6a10转化为a6a10.2.联想思维方法:要注意公式之间的联系,例如看到am+n就要联想到aman,它是公式的逆用.(学生总结本堂课的收获与困惑)(2分钟)(10分钟)14.1.2幂的乘方1.理解幂的乘方法则;2.运用幂的乘方法则计算.重点:理解幂的乘方法则.难点:幂的乘方法则的灵活运用.一、自学指导自学1:自学课本P96-97页“探究及例2”,理解幂的乘方的法则完成填空.(5分钟)(1)52中,底数是5,指数是2,表示2个5相乘;(52)3表示3个52相乘;(2)(52)3=52×52×52(根据幂的意义)=5×5×5×5×5×5(根据同底数幂的乘法法则)=52×3;(am)2=amam=a2m(根据aman=am+n);(am)n=amam…am,sup6(n个am))(根据幂的意义)=am+m+…+m,sup6(n个m))(根据同底数幂的乘法法则)=amn(根据乘法的意义).总结归纳:幂的乘方,底数不变,指数相乘.(am)n=amn(m,n都是正整数).二、自学检测:学生自主完成,小组内展示、点评,教师巡视.(7分钟)1.课本P97页练习题.2.计算:(1)(103)2;(2)(x3)5;(3)(-xm)5;(4)(a2)4a5.解:(1)(103)2=103×2=106;(2)(x3)5=x3×5=x15;(3)(-xm)5=-x5m;(4)(a2)4a5=a2×4a5=a8a5=a点拨精讲:遇到乘方与乘法的混算应先乘方再乘法.3.计算:(1)[(-x)3]2;(2)(-24)3;(3)(-23)4;(4)(-a5)2+(-a2)5.解:(1)[(-x)3]2=(-x3)2=x6;(2)(-24)3=-212;(3)(-23)4=212;(4)(-a5)2+(-a2)5=a10-a10=0.点拨精讲:弄清楚底数才能避免符号错误,混合运算时首先确定运算顺序.小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(10分钟)探究1若42n=28,求n的值.解:∵4=22,∴42n=(22)2n=24n,∴4n=8,∴n=2点拨精讲:可将等式两边化成底数或指数相同的数,再比较.探究2已知am=3,an=4(m,n为整数),求a3m+2n的值.解:a3m+2n=a3ma2n=(am)3(an)2=33×42=27×16=432.学生独立确定解题思路,小组内交流,上台展示并讲解思路.(8分钟)1.填空:108=()2,b27=()9,(ym)3=()m,p2n+2=()2.2.计算:(1)(-x3)5;(2)a6(a3)2(a2)4;(3)[(x-y)2]3;(4)x2x4+(x2)3.解:(1)(-x3)5=-x15;(2)a6(a3)2(a2)4=a6a6a8=a20;(3)[(x-y)2]3=(x-y)6;(4)x2x4+(x2)3=x6+x6=2x.若xmx2m=3,求x9m的值.解:∵xmx2m=3,∴x3m=3,∴x9m=(x3m)3=33=27.(3分钟)公式(am)n的逆用:amn=(am)n=(an)m.(学生总结本堂课的收获与困惑)(2分钟)(10分钟)14.1.3积的乘方1.理解积的乘方法则.2.运用积的乘方法则计算.重点:理解积的乘方法则.难点:积的乘方法则的灵活运用.一、自学指导自学1:自学课本P97-98页“探究及例3”,理解积的乘方的法则,完成填空.(5分钟)填空:(1)(2×3)3=216,23×33=216;(-2×3)3=-216,(-2)3×33=-216.(2)(ab)n=(ab)(ab)……(ab)(n)个=(aa……a)(n)个(bb……b)(n)个=anbn.总结归纳:积的乘方等于把积的每一个因式分别乘方,再把所得的幂相乘.(ab)n=anbn(n是正整数).推广:(abc)n=anbncn(n是正整数).点拨精讲:积的乘方法则的推导实质是从整体到部分的顺序去思考的.二、自学检测:学生自主完成,小组内展示、点评,教师巡视.(7分钟)1.课本P98页练习题.2.计算:(1)(ab)3;(2)(-3xy)3;(3)(-2×104)3;(4)(2ab2)3.解:(1)(ab)3=a3b3;(2)(-3xy)3=-27x3y3;(3)(-2×104)3=(-2)3×(104)3=-8×1012;(4)(2ab2)3=8a3b.一个正方体的棱长为2×102毫米.(1)它的表面积是多少?(2)它的体积是多少?解:(1)6×(2×102)2=6×(4×104)=2.4×105,则它的表面积是2.4×105平方毫米;(2)(2×102)3=8×106,则它的体积是8×106立方毫米.小组讨论交流解题思路,小组活动后,小组代表展示活动成果.(10分钟)探究1计算:(1)(a4b2)3;(2)(anb3n)2+(a2b6)n;(3)[(3a3)2+(a2)3]2.解:(1)(a4b2)3=a12b6;(2)(anb3n)2+(a2b6)n=a2nb6n+a2nb6n=2a2nb6n;(3)[(3a3)2+(a2)3]2=(9a6+a6)2=(10a6)2=100a12.点拨精讲:注意先乘方再乘除后加减的运算顺序.探究2计算:(1)(99100)2013×(10099)2014;(2)0.12515×(215)3.解:(1)(99100)2013×(10099)2014=(99100)2013×(10099)2013×10099=(99100×10099)2013×10099=10099;(2)0.12515×(215)3=(18)15×(23)15=(18×23)15=1.点拨精讲:反用(ab)n=anbn可使计算简便.学生独立确定解题思路,小组内交流,上台展示并讲解思路.(8分钟)1.计算:(1)-(-3a2b3)2;(2)(2a2b)3-3(a3)2b3;(3)(-0.25)2008×(-4)2009.解:(1)-(-3a2b3)2=-9a4b6;(2)(2a2b)3-(3a3)2b3=8a6b3-9a6b3=-a6b3;(3)(-0.25)2008×(-4)2009=(14)2008×(-42009)=-(14×4)2008×4=-4.点拨精讲:可从里向外乘方也可从外向内乘方,但要注意符号问题.在计算中如遇底数互为相反数指数相同的,可反用积的乘方法则使计算简便.2.填空:4ma3mb2m=(4a3b2)m.(3分钟)公式(ab)n=anbn(n为正整数)的逆用:anbn=(ab)n(n为正整数).(学生总结本堂课的收获与困惑)(2分钟)(10分钟)14.1.4整式的乘法(1)1.了解单项式与单项式的乘法法则;2.运用单项式与单项式的乘法法则计算.重点:单项式与单项式的乘法法则.难点:运用单项式与单项式的乘法法则计算.一、自学指导自学1:自学课本P98-99页“思考题及例4”,理解单项式与单项式乘法的法则,完成下列填空.(5分钟)1.填空:(ab)c=(ac)b;aman=aman=am+n(m,n都是正整数);(am)n=amn(m,n都是正整数);(ab)n=anbn(n都是正整数).2.计算:a2-2a2=-a2,a22a3=2a5,(-2a3)2=4a6;12x2yz4xy2=(12×4)x(2+1)y(1+2)z=2x3y3z.总结归纳:单项式与单项式相乘,把它们的系数、同底数幂分别相乘,对于只在一个单项式里含有的字母,则连同它的指数作为积的一个因式.点拨精讲:单项式乘以单项式运用乘法的交换律和结合律将数和同底数幂分别结合在一起.二、自学检测:学生自主完成,小组内展示、点评,教师巡视.(7分钟)1.课本P99页练习题1,2.2.计算:(1)3x25x3;(2)4y(-2xy2);(3)(3x2y)3(-4x);(4)(-2a)3(-3a)2;(5)-6x2y(a-b)313xy2(b-a)2.解:(1)3x25x3=(3×5)(x2x3)=15x5;(2)4y(-2xy2)=(-4×2)x(yy2)=-8xy3;(3)(3x2y)3(-4x)=27x6y3(-4x)=(-27×4)(xx6)y3=-108x7y3;(4)(-2a)3(-3a)2=(-8a3)9a2=(-8×9)(a3a2)=-72a5;(5)-6x2y(
本文标题:2017年八年级数学上第十四章整式的乘法与因式分解学案人教版
链接地址:https://www.777doc.com/doc-7214522 .html