您好,欢迎访问三七文档
当前位置:首页 > 幼儿/小学教育 > 小学教育 > 24.1.4-圆周角(2)上课课件
人教版九年级上册五印中学初三2013.10在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.圆周角定理·CDABO老师提示:圆周角定理是承上启下的知识点,要予以重视.推论:半圆(或直径)所对的圆周角是直角,900的圆周角所对的弦是直径。AOBC1C2C3∵AB是直径∴∠AC1B=900∵∠AC1B=900∴AB是直径同圆或等圆中,相等的圆周角所对的弧也相等。DABOCEFF∵∠CAD=∠EBF∴CD=EF))课前练习:1.如图,等边三角形ABC,点D是⊙O上一点,则∠BDC=;图3ODCBA60°2.如图,在⊙O中,AB是⊙O的直径,∠D=20°,则∠AOC的度数为_____140°ABDCO3.如图,AB和CD都是⊙0的直径,∠AOC=60°,则∠C的度数是。30°新课讲解:若一个多边形各顶点都在同一个圆上,那么,这个多边形叫做圆内接多边形,这个圆叫做这个多边形的外接圆。OBCDEFAOACDEBOCABD如图,四边形ABCD为⊙O的内接四边形;⊙O为四边形ABCD的外接圆。CODBA如图:圆内接四边形ABCD中,∵弧BCD和弧BAD所对的圆心角的和是周角∴∠A+∠C=180°同理∠B+∠D=180°圆的内接四边形的对角互补。⊙O直径AB为10cm,弦AC为6cm,∠ACB的平分线交⊙O于D,求BC、AD、BD的长.86102222ACABBC又在Rt△ABD中,AD2+BD2=AB2,221052(cm)22ADBDAB·ABCDO解:∵AB是直径,∴∠ACB=∠ADB=90°.在Rt△ABC中,∵CD平分∠ACB,∴AD=BD..ADBD106例题(1)四边形ABCD内接于⊙O,则∠A+∠C=__,∠B+∠ADC=_____;若∠B=800,则∠ADC=______∠CDE=______(2)四边形ABCD内接于⊙O,∠AOC=1000则∠B=______∠D=______(3)四边形ABCD内接于⊙O,∠A:∠C=1:3,则∠A=_____,EDBAC80DBACO100180°180°100°80°50°130°45°填空若ABCD为圆内接四边形,则下列哪个选项可能成立()(A)∠A∶∠B∶∠C∶∠D=1∶2∶3∶4(B)∠A∶∠B∶∠C∶∠D=2∶1∶3∶4(C)∠A∶∠B∶∠C∶∠D=3∶2∶1∶4(D)∠A∶∠B∶∠C∶∠D=4∶3∶2∶1B1、在⊙O中,∠CBD=30°,∠BDC=20°,求∠A。OABDC解:∵∠CBD=300,∠BDC=200∴∠C=1800-∠CBD-∠BDC=1300∴∠A=1800-∠C=500(圆内接四边形对角互补)2、如图,在⊙O中,AB为直径,CB=CF,弦CG⊥AB,交AB于D,交BF于E。求证:BE=EC))OABDCEGFBE=EC∠EBC=∠ECBCF=BG))CB=BG))CB=CF))AB为直径CG⊥ABDBACO3.梯形ABCD内接于⊙O,AD∥BC,∠B=750,则∠C=_____75°返回圆的内接梯形一定是_____梯形。等腰3.求证:如果三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形.(提示:作出以这条边为直径的圆.)·ABCO求证:△ABC为直角三角形.证明:CO=AB,12以AB为直径作⊙O,∵AO=BO,∴AO=BO=CO.∴点C在⊙O上.又∵AB为直径,∴∠ACB=×180°=90°.12已知:△ABC中,CO为AB边上的中线,12且CO=AB∴△ABC为直角三角形.练习小结与作业1、本节课我们学习了哪些知识?2、圆周角定理及其推论的用途你都知道了吗?结束寄语•要养成用数学的语言去说明道理,用数学的思维去解读世界的习惯.下课了!
本文标题:24.1.4-圆周角(2)上课课件
链接地址:https://www.777doc.com/doc-7219777 .html