您好,欢迎访问三七文档
当前位置:首页 > 机械/制造/汽车 > 高一上期中数学试卷(有答案)
第1页共13页高一(上)期中数学试卷一、选择题(共12小题,每小题5分,满分60分)1.已知集合M={1,2,3,4},N={﹣2,2},下列结论成立的是()A.N⊆MB.M∪N=MC.M∩N=ND.M∩N={2}2.已知集合U=R,P={x|x2﹣4x﹣5≤0},Q={x|x≥1},则P∩(∁UQ)()A.{x|﹣1≤x<5}B.{x|1<x<5}C.{x|1≤x<5}D.{x|﹣1≤x<1}3.下列函数中表示同一函数的是()A.y=与y=()4B.y=与y=C.y=与y=•D.y=与y=4.已知f(x)=,则f(3)为()A.3B.4C.1D.25.函数f(x)=2x+x﹣2的零点所在的一个区间是()A.(﹣2,﹣1)B.(﹣1,0)C.(0,1)D.(1,2)6.函数g(x)=2015x+m图象不过第二象限,则m的取值范围是()A.m≤﹣1B.m<﹣1C.m≤﹣2015D.m<﹣20157.设a=log0.50.9,b=log1.10.9,c=1.10.9,则a,b,c的大小关系为()A.a<b<cB.b<a<cC.b<c<aD.a<c<b8.()A.(﹣∞,2]B.(0,+∞)C.[2,+∞)D.[0,2]9.一高为H,满缸水量为V的鱼缸截面如图所示,其底部破了一个小洞,缸中水从洞中流出,若鱼缸水深为h时水的体积为v,则函数v=f(h)的大致图象可能是图中四个选项中的()A.B.C.D.10.定义在R上的偶函数f(x)满足:对任意的x1,x2∈(﹣∞,0](x1≠x2),有,且f(2)=0,则不等式<0的解集是()A.(﹣∞,﹣2)∪(2,+∞)B.(﹣∞,﹣2)∪(1,2)C.(﹣2,1)∪(2,+∞)D.(﹣2,1)∪(1,2)11.已知实数a≠0,函数,若f(1﹣a)=f(1+a),则a的值为()第2页共13页A.B.C.D.12.设奇函数f(x)在[﹣1,1]上是增函数,且f(﹣1)=﹣1,若对所有的x∈[﹣1,1]及任意的a∈[﹣1,1]都满足f(x)≤t2﹣2at+1,则t的取值范围是()A.[﹣2,2]B.{t|t≤﹣或t或=0}C.[﹣,]D.{t|t≤﹣2或t≥2或t=0}二、填空题(共4小题,每小题5分,满分20分)13.函数y=|x﹣a|的图象关于直线x=2对称,则a=.14.设函数f(x)满足,则f(2)=.15.已知函数f(x)=在区间(﹣2,+∞)上为增函数,则实数a的取值范围是.16.若∃x1,x2∈R,x1≠x2,使得f(x1)=f(x2)成立,则实数a的取值范围是.三、解答题(共6小题,满分70分)17.(1)若xlog32=1,试求4x+4﹣x的值;(2)计算:(2)﹣(﹣9.6)0﹣(3)+(1.5)﹣2+(×)4.18.已知集合M={x|x2﹣3x≤10},N={x|a+1≤x≤2a+1}.(1)若a=2,求M∩(∁RN);(2)若M∪N=M,求实数a的取值范围.19.已知函数f(x)是定义域在R上的奇函数,当x>0时,f(x)=x2﹣2x.(1)求出函数f(x)在R上的解析式;(2)写出函数的单调区间.20.电信局为了配合客户不同需要,设有A,B两种优惠方案.这两种方案应付话费(元)与通话时间x(min)之间的关系如图所示,其中D的坐标为(,230).(1)若通话时间为2小时,按方案A,B各付话费多少元?(2)方案B从500分钟以后,每分钟收费多少元?(3)通话时间在什么范围内,方案B比方案A优惠?第3页共13页21.已知函数f(x)=(a,b,c∈Z)是奇函数,且f(1)=2,f(2)<3.(1)求a,b,c的值.(2)判断函数f(x)在[1,+∞)上的单调性,并用定义证明你的结论.(3)解关于t的不等式:f(﹣t2﹣1)+f(|t|+3)>0.22.定义在D上的函数f(x),如果满足对任意x∈D,存在常数M>0,都有|f(x)|≤M成立,则称f(x)是D上的有界函数,其中M称为函数f(x)的上界,已知函数f(x)=1+x+ax2(1)当a=﹣1时,求函数f(x)在(﹣∞,0)上的值域,判断函数f(x)在(﹣∞,0)上是否为有界函数,并说明理由;(2)若函数f(x)在x∈[1,4]上是以3为上界的有界函数,求实数a的取值范围.高一(上)期中数学试卷参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.已知集合M={1,2,3,4},N={﹣2,2},下列结论成立的是()A.N⊆MB.M∪N=MC.M∩N=ND.M∩N={2}【考点】集合的包含关系判断及应用.【专题】集合.【分析】由M={1,2,3,4},N={﹣2,2},则可知,﹣2∈N,但是﹣2∉M,则N⊄M,M∪N={1,2,3,4,﹣2}≠M,M∩N={2}≠N,从而可判断.【解答】解:A、由M={1,2,3,4},N={﹣2,2},可知﹣2∈N,但是﹣2∉M,则N⊄M,故A错误;B、M∪N={1,2,3,4,﹣2}≠M,故B错误;C、M∩N={2}≠N,故C错误;D、M∩N={2},故D正确.故选D.【点评】本题主要考查了集合的包含关系的判断,解题的关键是熟练掌握集合的基本运算.2.已知集合U=R,P={x|x2﹣4x﹣5≤0},Q={x|x≥1},则P∩(∁UQ)()A.{x|﹣1≤x<5}B.{x|1<x<5}C.{x|1≤x<5}D.{x|﹣1≤x<1}【考点】交、并、补集的混合运算.【专题】计算题;对应思想;定义法;集合.【分析】先化简集合P,求出∁UQ,再计算P∩(∁UQ)的值.【解答】解:∵集合U=R,P={x|x2﹣4x﹣5≤0}={x|﹣1≤x≤5},Q={x|x≥1},∴∁UQ={x|x<1}∴P∩(∁UQ)={x|﹣1≤x<1}.故选:D.【点评】本题考查了集合的化简与运算问题,是基础题目.3.下列函数中表示同一函数的是()A.y=与y=()4B.y=与y=C.y=与y=•D.y=与y=【考点】判断两个函数是否为同一函数.【专题】函数思想;分析法;函数的性质及应用.【分析】根据两个函数的定义域相同,对应关系也相同,即可判断它们是同一函数.第4页共13页【解答】解:对于A,函数y==x2(x∈R),与函数y==x2(x≥0)的定义域不同,所以不是同一函数;对于B,函数y==x(x∈R),与函数y==x(x≠0)的定义域不同,所以不是同一函数;对于C,函数y==(x≤﹣1或x≥0),与函数y=•=(x≥0)的定义域不同,所以不是同一函数;对于D,函数y=(x≠0),与函数y==(x≠0)的定义域相同,对应关系也相同,所以是同一函数.故选:D.【点评】本题考查了判断两个函数是否为同一函数的应用问题,是基础题目.4.已知f(x)=,则f(3)为()A.3B.4C.1D.2【考点】分段函数的应用.【专题】计算题;函数的性质及应用.【分析】由分段函数的解析式,先运用第二段,再由第一段,即可得到所求值.【解答】解:f(x)=,可得f(3)=f(4)=f(5)=f(6)=6﹣5=1.故选:C.【点评】本题考查分段函数的运用:求函数值,考查运算能力,属于基础题.5.函数f(x)=2x+x﹣2的零点所在的一个区间是()A.(﹣2,﹣1)B.(﹣1,0)C.(0,1)D.(1,2)【考点】函数零点的判定定理.【专题】计算题.【分析】利用函数的零点判定定理,先判断函数的单调性,然后判断端点值的符合关系.【解答】解:∵f(x)=2x+x﹣2在R上单调递增又∵f(0)=﹣1<0,f(1)=1>0由函数的零点判定定理可知,函数的零点所在的一个区间是(0,1)故选C【点评】本题主要考查函数零点区间的判断,判断的主要方法是利用根的存在性定理,判断函数在给定区间端点处的符号是否相反.6.函数g(x)=2015x+m图象不过第二象限,则m的取值范围是()A.m≤﹣1B.m<﹣1C.m≤﹣2015D.m<﹣2015【考点】指数函数的图像变换.【专题】数形结合;转化法;函数的性质及应用.【分析】根据指数函数的图象和性质进行求解即可.【解答】解:函数g(x)=2015x+m为增函数,若g(x)=2015x+m图象不过第二象限,则满足g(0)≤0,即g(0)=1+m≤0,则m≤﹣1,故选:A.第5页共13页【点评】本题主要考查指数函数的图象和性质,根据条件建立不等式关系是解决本题的关键.比较基础.7.设a=log0.50.9,b=log1.10.9,c=1.10.9,则a,b,c的大小关系为()A.a<b<cB.b<a<cC.b<c<aD.a<c<b【考点】对数值大小的比较.【专题】函数的性质及应用.【分析】利用对数函数和指数函数的性质求解.【解答】解:∵0=log0.51<a=log0.50.9<log0.50.5=1,b=log1.10.9<log1.11=0,c=1.10.9>1.10=1,∴b<a<c,故选:B.【点评】本题考查对数值大小的比较,是基础题,解题时要注意对数函数和指数函数的性质的合理运用.8.()A.(﹣∞,2]B.(0,+∞)C.[2,+∞)D.[0,2]【考点】函数的值域.【专题】函数的性质及应用.【分析】根据函数≥0,而且﹣x2﹣2x+3=﹣(x+1)2+4≤4,从而求得函数的值域.【解答】解:∵函数≥0,而且﹣x2﹣2x+3=﹣(x2+2x﹣3)=﹣(x+1)2+4≤4,∴≤2,∴0≤f(x)≤2,故选D.【点评】本题主要考查求函数的值域,属于基础题.9.一高为H,满缸水量为V的鱼缸截面如图所示,其底部破了一个小洞,缸中水从洞中流出,若鱼缸水深为h时水的体积为v,则函数v=f(h)的大致图象可能是图中四个选项中的()A.B.C.D.【考点】函数的图象.【专题】函数的性质及应用.【分析】水深h越大,水的体积v就越大,故函数v=f(h)是个增函数,一开始增长越来越快,后来增长越来越慢,图象是先凹后凸的.【解答】解:由图得水深h越大,水的体积v就越大,故函数v=f(h)是个增函数.据四个选项提供的信息,当h∈[O,H],我们可将水“流出”设想成“流入”,第6页共13页这样每当h增加一个单位增量△h时,根据鱼缸形状可知,函数V的变化,开始其增量越来越大,但经过中截面后则增量越来越小,故V关于h的函数图象是先凹后凸的,曲线上的点的切线斜率先是逐渐变大,后又逐渐变小,故选:B.【点评】本题考查了函数图象的变化特征,函数的单调性的实际应用,体现了数形结合的数学思想和逆向思维,属于中档题.10.定义在R上的偶函数f(x)满足:对任意的x1,x2∈(﹣∞,0](x1≠x2),有,且f(2)=0,则不等式<0的解集是()A.(﹣∞,﹣2)∪(2,+∞)B.(﹣∞,﹣2)∪(1,2)C.(﹣2,1)∪(2,+∞)D.(﹣2,1)∪(1,2)【考点】奇偶性与单调性的综合.【专题】数形结合;转化法;函数的性质及应用.【分析】根据条件判断函数的单调性,根据函数奇偶性和单调性之间的关系,作出函数f(x)的图象,利用数形结合将不等式进行转化即可解不等式即可.【解答】解:∵任意的x1,x2∈(﹣∞,0](x1≠x2),有,∴此时函数f(x)在(﹣∞,0]上为减函数,∵f(x)是偶函数,∴函数在[0,+∞)上为增函数,∵f(2)=0,∴f(﹣2)=﹣f(2)=0,作出函数f(x)的图象如图:则不等式<0等价为<0,即<0,即或,即或,即x<﹣2或1<x<2,故不等式的解集为(﹣∞,﹣2)∪(1,2).故选:B.【点评】本题主要考查不等式的解集,利用函数奇偶性和单调性之间的关系是解决本题的关键.11.已知实数a≠0,函数,若f(1﹣a)=f(1+a),则a的值为()A.B.C.D.【考点】分段函数的解析式求法及其图象的作法.【专题】计算题;分类讨论.【分析】由a≠0,f(1﹣a)=f(1+a),要求f(1﹣a),与f(1+a),需要判断1﹣a与1+a与1的大小,从而需要讨论a与0的大小,代入可求第7页共13页【解答】解:∵a≠0,f(1﹣a)=f(1+a)当a>0时,1﹣a<1<1+a,则f(1﹣a)=2(1﹣a)+
本文标题:高一上期中数学试卷(有答案)
链接地址:https://www.777doc.com/doc-7220075 .html