您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 信息化管理 > 概率论与数理统计教程(茆诗松)第6章
第六章参数估计华东师范大学9November2020第1页第六章参数估计§6.1点估计的几种方法§6.2点估计的评价标准§6.3最小方差无偏估计§6.4贝叶斯估计§6.5区间估计第六章参数估计华东师范大学9November2020第2页•一般常用表示参数,参数所有可能取值组成的集合称为参数空间,常用表示。参数估计问题就是根据样本对上述各种未知参数作出估计。•参数估计的形式有两种:点估计与区间估计。第六章参数估计华东师范大学9November2020第3页•设x1,x2,…,xn是来自总体X的一个样本,我们用一个统计量的取值作为的估计值,称为的点估计(量),简称估计。在这里如何构造统计量并没有明确的规定,只要它满足一定的合理性即可。这就涉及到两个问题:1ˆˆ(,,)nxxˆˆ其一是如何给出估计,即估计的方法问题;其二是如何对不同的估计进行评价,即估计的好坏判断标准。第六章参数估计华东师范大学9November2020第4页§6.1点估计的几种方法6.1.1替换原理和矩法估计一、矩法估计替换原理是指用样本矩及其函数去替换相应的总体矩及其函数,譬如:•用样本均值估计总体均值E(X),即;•用样本方差估计总体方差Var(X),即•用样本的p分位数估计总体的p分位数,•用样本中位数估计总体中位数。ˆ()EXx2ˆVar()nXs第六章参数估计华东师范大学9November2020第5页例6.1.1对某型号的20辆汽车记录其每加仑汽油的行驶里程(km),观测数据如下:29.827.628.327.930.128.729.928.027.928.728.427.229.528.528.030.029.129.829.626.9经计算有由此给出总体均值、方差和中位数的估计分别为:28.695,0.9185和28.6。矩法估计的实质是用经验分布函数去替换总体分布,其理论基础是格里纹科定理。20.528.695,0.9185,28.6nxsm第六章参数估计华东师范大学9November2020第6页二、概率函数P(x,θ)已知时未知参数的矩法估计设总体具有已知的概率函数P(x,1,…,k),x1,x2,…,xn是样本,假定总体的k阶原点矩k存在,若1,…,k能够表示成1,…,k的函数j=j(1,…,k),则可给出诸j的矩法估计为其中1ˆ(,,),1,,,jjkaajk11njjiiaxn第六章参数估计华东师范大学9November2020第7页例6.1.2设总体服从指数分布,由于EX=1/,即=1/EX,故的矩法估计为另外,由于Var(X)=1/2,其反函数为因此,从替换原理来看,的矩法估计也可取为s为样本标准差。这说明矩估计可能是不唯一的,这是矩法估计的一个缺点,此时通常应该尽量采用低阶矩给出未知参数的估计。ˆ1/x1/Var()X1ˆ1/s第六章参数估计华东师范大学9November2020第8页例6.1.3x1,x2,…,xn是来自(a,b)上的均匀分布U(a,b)的样本,a与b均是未知参数,这里k=2,由于不难推出由此即可得到a,b的矩估计:2(),Var(),212abbaEXX3Var(),3Var(),aEXXbEXXˆˆ3,3axsbxs第六章参数估计华东师范大学9November2020第9页6.1.2极(最)大似然估计定义6.1.1设总体的概率函数为P(x;),是参数可能取值的参数空间,x1,x2,…,xn是样本,将样本的联合概率函数看成的函数,用L(;x1,x2,…,xn)表示,简记为L(),称为样本的似然函数。112()(;,,)(;)(;)(;)nnLLxxpxpxpx第六章参数估计华东师范大学9November2020第10页如果某统计量满足则称是的极(最)大似然估计,简记为MLE(MaximumLikelihoodEstimate)。1ˆˆ(,,)nxxˆ()max()LLˆ人们通常更习惯于由对数似然函数lnL()出发寻找的极大似然估计。当L()是可微函数时,求导是求极大似然估计最常用的方法,对lnL()求导更加简单些。第六章参数估计华东师范大学9November2020第11页例6.1.6设一个试验有三种可能结果,其发生概率分别为现做了n次试验,观测到三种结果发生的次数分别为n1,n2,n3(n1+n2+n3=n),则似然函数为其对数似然函数为22123,2(1),(1)ppp123212322222()()[2(1)][(1)]2(1)nnnnnnnnL12322ln()(2)ln(2)ln(1)ln2Lnnnnn第六章参数估计华东师范大学9November2020第12页将之关于求导,并令其为0得到似然方程解之,得由于所以是极大值点。ˆ12322201nnnn121212322ˆ2()2nnnnnnnn21232222ln()220(1)Lnnnn第六章参数估计华东师范大学9November2020第13页例6.1.7对正态总体N(,2),θ=(,2)是二维参数,设有样本x1,x2,…,xn,则似然函数及其对数分别为22212/222122221()1(,)exp221(2)exp()21ln(,)()lnln(2)222niinniiniixLxnnLx第六章参数估计华东师范大学9November2020第14页将lnL(,2)分别关于两个分量求偏导并令其为0,即得到似然方程组(6.1.9)(6.1.10)221ln(,)1()0niiLx222421ln(,)1()022niiLnx第六章参数估计华东师范大学9November2020第15页解此方程组,由(6.1.9)可得的极大似然估计为将之代入(6.1.10),得出2的极大似然估计利用二阶导函数矩阵的非正定性可以说明上述估计使得似然函数取极大值。11ˆniixxn2221*1ˆ()niixxsn第六章参数估计华东师范大学9November2020第16页虽然求导函数是求极大似然估计最常用的方法,但并不是在所有场合求导都是有效的。例6.1.8设x1,x2,…,xn是来自均匀总体U(0,)的样本,试求的极大似然估计。第六章参数估计华东师范大学9November2020第17页解似然函数要使L()达到最大,首先一点是示性函数取值应该为1,其次是1/n尽可能大。由于1/n是的单调减函数,所以的取值应尽可能小,但示性函数为1决定了不能小于x(n),由此给出的极大似然估计:。(){0}{}111()innxxnniLII()ˆnx第六章参数估计华东师范大学9November2020第18页§6.2点估计的评价标准6.2.1相合性我们知道,点估计是一个统计量,因此它是一个随机变量,在样本量一定的条件下,我们不可能要求它完全等同于参数的真实取值。但如果我们有足够的观测值,根据格里纹科定理,随着样本量的不断增大,经验分布函数逼近真实分布函数,因此完全可以要求估计量随着样本量的不断增大而逼近参数真值,这就是相合性,严格定义如下。第六章参数估计华东师范大学9November2020第19页定义6.2.1设∈Θ为未知参数,是的一个估计量,n是样本容量,若对任何一个ε0,有(6.2.1)则称为参数的相合估计。1ˆˆ(,,)nnnxxˆlim(||)0nnPˆn第六章参数估计华东师范大学9November2020第20页相合性被认为是对估计的一个最基本要求,如果一个估计量,在样本量不断增大时,它都不能把被估参数估计到任意指定的精度,那么这个估计是很值得怀疑的。通常,不满足相合性要求的估计一般不予考虑。证明估计的相合性一般可应用大数定律或直接由定义来证.第六章参数估计华东师范大学9November2020第21页若把依赖于样本量n的估计量看作一个随机变量序列,相合性就是依概率收敛于,所以证明估计的相合性可应用依概率收敛的性质及各种大数定律。ˆnˆn第六章参数估计华东师范大学9November2020第22页在判断估计的相合性时下述两个定理是很有用的。定理6.2.1设是的一个估计量,若则是的相合估计,1ˆˆ(,,)nnnxxˆˆlim(),lim()0nnnnEVarˆn1ˆˆ,,nnk1ˆˆˆ(,,)nnnkg定理6.2.2若分别是1,…,k的相合估计,=g(1,…,k)是1,…,k的连续函数,则是的相合估计。第六章参数估计华东师范大学9November2020第23页6.2.2无偏性定义6.2.2设是的一个估计,的参数空间为Θ,若对任意的∈Θ,有则称是的无偏估计,否则称为有偏估计。1ˆˆ(,,)nxxˆ()Eˆ第六章参数估计华东师范大学9November2020第24页例6.2.4对任一总体而言,样本均值是总体均值的无偏估计。当总体k阶矩存在时,样本k阶原点矩ak是总体k阶原点矩k的无偏估计。但对中心矩则不一样,譬如,由于,样本方差s*2不是总体方差2的无偏估计,对此,有如下两点说明:(1)当样本量趋于无穷时,有E(s*2)2,我们称s*2为2的渐近无偏估计。(2)若对s*2作如下修正:,则s2是总体方差的无偏估计。22*1()nEsn2221*1()11niinssxxnn第六章参数估计华东师范大学9November2020第25页6.2.3有效性定义6.2.3设是的两个无偏估计,如果对任意的∈Θ,有且至少有一个∈Θ使得上述不等号严格成立,则称比有效。12ˆˆ,12ˆˆVar()Var(),1ˆ2ˆ第六章参数估计华东师范大学9November2020第26页例6.2.6设x1,x2,…,xn是取自某总体的样本,记总体均值为,总体方差为2,则,,都是的无偏估计,但显然,只要n1,比有效。这表明用全部数据的平均估计总体均值要比只使用部分数据更有效。11ˆx2ˆx2212ˆˆVar(),Var()/n2ˆ1ˆ第六章参数估计华东师范大学9November2020第27页6.2.4均方误差无偏估计不一定比有偏估计更优。评价一个点估计的好坏一般可以用:点估计值与参数真值的距离平方的期望,这就是下式给出的均方误差均方误差是评价点估计的最一般的标准。我们希望估计的均方误差越小越好。ˆ2()()MSEE第六章参数估计华东师范大学9November2020第28页注意到,因此(1)若是的无偏估计,则,这说明用方差考察无偏估计有效性是合理的。(2)当不是的无偏估计时,就要看其均方误差。下面的例子说明:在均方误差的含义下有些有偏估计优于无偏估计。2()Var()()MSEEˆˆˆ()MSE()Var()MSE第六章参数估计华东师范大学9November2020第29页例6.2.8对均匀总体U(0,),由的极大似然估计得到的无偏估计是,它的均方误差现我们考虑θ的形如的估计,其均方差为用求导的方法不难求出当时上述均方误差达到最小,且其均方误差所以在均方误差的标准下,有偏估计优于无偏估计。()ˆ(1)/nnxn2ˆˆ()Var()(2)MSEnn()ˆnx22222ˆ()1(1)(2)1nnMSEnnn0(2)/(1)nn2202()()(1)(2)MSE
本文标题:概率论与数理统计教程(茆诗松)第6章
链接地址:https://www.777doc.com/doc-7220971 .html