您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 商业计划书 > 三角函数ppt精编版
三角函数天津第一百中学陈洪波复习课三角函数复习知识网络(观察网络,回顾概念及公式)任意角的概念角的度量方法(角度制与弧度制)弧长公式与扇形面积公式任意角的三角函数同角公式诱导公式两角和与差的三角函数二倍角的三角函数三角函数式的恒等变形(化简、求值、证明)三角函数的图形和性质正弦型函数的图象xAysin已知三角函数值,求角一、任意角的三角函数1正角负角oxy的终边的终边),(零角(1)终边相同的角与相等角的区别终边相同的角不一定相等,相等的角终边一定相同。(2)象限角、轴线角与区间角的区别Zkkk2,2xyOxyOxyOxyO(3)角的终边落在“射线上”、“直线上”及“互相垂直的两条直线上”的一般表示式Zkk2ZkkZkk2几点注意0306454360212032135431506527023180360290特殊角的角度数与弧度数的对应表角的度量方法(角度制与弧度制)弧长公式与扇形面积公式(1)角度与弧度的换算=18001rad=180010=180rad(2)弧长公式与扇形面积公式=rl1、弧长公式:2、扇形面积公式:S=12rlS=12r2弧度0度2、角度与弧度的互化3、任意角的三角函数定义xyo●P(x,y)r的终边yxxryrxyrxrycot,sec,csctan,cos,sin4、同角三角函数的基本关系式倒数关系:1seccos1cscsin1cottan商关系:sincoscotcossintan平方关系:222222csccot1sectan11cossin22yxr定义:三角函数值的符号:“一全正,二正弦,三两切,四余弦”5、诱导公式:,:2符号看象限奇变偶不变口诀为的各三角函数值的化简诱导公式是针对k例:)23sin(cos(即把看作是锐角))2cos(sin)sin(sin)cos(cos二、两角和与差的三角函数1、预备知识:两点间距离公式xyo),(111yxp●●),(222yxp22122121)()(||yyxxpp),(21yxQ2、两角和与差的三角函数sinsincoscos)cos(sincoscossin)sin(tantan1tantan)tan(注:公式的逆用及变形的应用)tantan1)(tan(tantan公式变形cossin22sin22sincos2cos22sin211cos21sincos222tan1tan22tan降幂公式22cos1cos222cos1sin222cos1cos22cos1sin2cos12cos1tan半角公式二倍角的三角函数sin2x=2sinxcosxcos2x=cos2x-sin2x=2sinxcosx1=2sinxcosxcos2x+sin2x=2tanx1+tan2x=cos2x-sin2x1=cos2x-sin2xcos2x+sin2x=1-tan2x1+tan2xtan2x=2tanx1-tan2x二倍角的三角函数-万能公式三角函数复习---三角变换---角的变换=+--4=+-+42=++-+2=-2-2-辅助角公式asin+bcos=a2+b2sin+三、三角函数的图象和性质图象y=sinxy=cosxxoy22232-11xy22232-11性质定义域RR值域[-1,1][-1,1]周期性T=2T=2奇偶性奇函数偶函数单调性增函数]22,22[kk减函数]232,22[kk增函数]2,2[kk减函数]2,2[kko1、正弦、余弦函数的图象与性质2、正切函数的图象与性质y=tanx图象22xyo2323定义域值域},2|{ZkkxxR奇偶性奇函数周期性T单调性))(2,2(Zkkk对称中心渐近线)()0,21(ZkkZkkx,23、函数的图象(A0,0))sin(xAyxysin第一种变换:图象向左()或向右()平移个单位00||)sin(xy横坐标伸长()或缩短()到原来的倍纵坐标不变1101)sin(xy纵坐标伸长(A1)或缩短(0A1)到原来的A倍横坐标不变)sin(xAy第二种变换:xysin横坐标伸长()或缩短()到原来的倍纵坐标不变1011xysin图象向左()或向右()平移个单位00||)sin(xy纵坐标伸长(A1)或缩短(0A1)到原来的A倍横坐标不变)sin(xAy4、已知三角函数值求角反正弦arcsina表示在正弦值为a的那个角]2,2[]1,1[a],0[)2,2(Ra⑴反三角反余弦arccosa表示在余弦值为a的那个角]1,1[a反正切arctana表示在正切值为a的那个角①sin(arcsina)=a,]1,1[a②arcsin(-a)=-arcsina,]1,1[a③若则arcsin(sina)=a]2,0[a①cos(arccosa)=a,]1,1[a②arccos(-a)=arccosa,③若则arccos(cosa)=a]2,0[a①tan(arctana)=a,②arctan(-a)=-arctana,Ra③若,则arctan(tana)=a)2,0(a4、已知三角函数值求角⑵已知角x()的三角函数值求x的步骤]2,0[x①先确定x是第几象限角②若x的三角函数值为正的,求出对应的锐角;若x的三角函数值为负的,求出与其绝对值对应的锐角③根据x是第几象限角,求出x若x为第二象限角,即得x=;若x为第三象限角,即得x=;若x为第四象限角,即得x=④若,则在上面的基础上加上相应函数的周期的整数倍。1x1x1x1x12xRx例1:已知是第三象限角,且,求。四、主要题型31costan为第三象限角解:322)31(1cos1sin2222cossintan应用:三角函数值的符号;同角三角函数的关系;例2:已知,计算⑴⑵2tancossin2cossin3cossin解:⑴coscossin2coscossin3cossin2cossin31tan21tan337122123⑵1cossincossin22cossincossin1tantan2521222应用:关于的齐次式cossin与例3:已知,)4,0(),43,4(,135)4cos(,53)4sin(且)sin(求解:)](2cos[)sin()]4()4cos[()]4sin()4sin()4cos()4[cos(54)4cos()43,4(,53)4sin(且1312)4sin(),4,0(,135)4cos(且6556)13125313554(上式应用:找出已知角与未知角之间的关系例4:已知的值求)4sin(21sin2cos2),,2(2,222tan2解:)4sin(2sincos)4sin(21sin2cos22tan1tan1,222tan22tan2tan22tan1tan22或即2tan)2,4(),2(2322sincossincos应用:化简求值例5:已知函数求:⑴函数的最小正周期;⑵函数的单增区间;⑶函数的最大值及相应的x的值;⑷函数的图象可以由函数的图象经过怎样的变换得到。,,cos3cossin2sin22RxxxxxyRxxy,2sin2解:xxxxxxy222cos22sin1cos3cossin2sin)42sin(2212cos2sin1xxx⑴22T⑵得由,224222kxkZkkxk,883)](8,83[Zkkk函数的单增区间为⑶22,)(8,2242最大值时即当yZkkxkx⑷xy2sin2图象向左平移个单位8)42sin(2xy图象向上平移2个单位)42sin(22xy应用:化同一个角同一个函数
本文标题:三角函数ppt精编版
链接地址:https://www.777doc.com/doc-7233180 .html