您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 项目/工程管理 > 函数的奇偶性.ppt
从生活中这些图片中你感受到了什么1.请欣赏:这些几何图形中又体现了什么1.继续欣赏:观察以下函数图象,从图象对称的角度把这些函数图象分类:Ox①2)(xxfy③Oxy||)(xxfOxyxxf)(④②Oxy||1)(xxfOxy⑤3)(xxfyxO)0(1)(xxxf⑥函数的奇偶性GraduateSchoolofJiangxiNormalUniversityHai-GenXiao观察函数g(x)=x2的图象,看看它具有怎样的对称性?xog(x)=x2y关于y轴成轴对称oxy关于原点成中心对称x1观察函数f(x)=的图象,看看它具有怎样的对称性?21)2(f21)2(f31)3(f31)3(f1)1(f1)1(f)(11)(xfxxxf为奇函数函数xxf1)(有怎样的关系?与的值,并思考,求由)()()3(),3(),2(),2(),1(),1(1)(xfxfffffffxxf关于原点成中心对称x1观察函数f(x)=的图象,看看它具有怎样的对称性?xyo……观察函数g(x)=x2的图象,看看它具有怎样的对称性?xog(x)=x2y关于y轴成轴对称由g(x)=x2求g(-1)、g(1)、g(-2)、g(2)、g(-3)、g(3)的值,并思考g(-x)与g(x)有怎样的关系?g(-1)=(-1)2=1g(1)=12=1g(-2)=(-2)2=4、g(-3)=(-3)2=9、g(3)=32=9、g(-x)=(-x)2=x2=g(x)函数g(x)=x2为偶函数……g(2)=22=4、定义:如果对于函数f(x)定义域A中的任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数(oddfunction)注意:(1)当X∈A时,-X∈A(定义域关于原点对称)如果对于函数f(x)定义域A中的任意一个x,都有f(-x)=f(x),那么函数f(x)就叫做偶函数(evenfunction)。(2)f(-x)=-f(x)注意:(1)当X∈A时,-X∈A(定义域关于原点对称)(2)f(-x)=f(x)观察函数g(x)=x2的图象,看看它具有怎样的对称性?xog(x)=x2y关于y轴成轴对称oxy关于原点成中心对称x1观察函数f(x)=的图象,看看它具有怎样的对称性?函数是奇函数结论:函数是偶函数函数图象关于坐标原点对称函数图象关于y轴对称定义辨析,强化内涵2()fxx1,2x0x123-1-2-3123456y不是。观察下面的函数的图象关于y轴对称吗?思考:如果一个函数的图象关于y轴对称,它的定义域应该有什么特点?定义域关于原点对称.☆对奇函数、偶函数定义的说明:(1)函数具有奇偶性:定义域关于原点对称。对于定义域内的任意一个x,则-x也一定是定义域内的一个自变量(2)若f(x)为奇函数,则f(-x)=-f(x)成立.若f(x)为偶函数,则f(-x)=f(x)成立.图象关于原点对称图象关于y轴对称xo[a,b][-b,-a]3.强化定义,深化内涵(3)如果一个函数f(x)是奇函数或偶函数,那么我们就说函数f(x)具有奇偶性.函数的奇偶性是函数的整体性质;既不是奇函数也不是偶函数的函数称为非奇非偶函数.例、判断下列函数的奇偶性:(1)f(x)=x+x3+x5;(2)f(x)=x2+1;(3)f(x)=x+1;(4)f(x)=x2,x∈[-1,2](5)f(x)=0解:(1)函数f(x)=x+x3+x5的定义域为R,又因为f(-x)=(-x)+(-x)3+(-x)5当X∈R时,-X∈R=-x-x3-x5=-(x+x3+x5)=-f(x)所以函数f(x)=x+x3+x5是奇函数。所以,函数f(x)=x2+1是偶函数又因为f(-x)=(-x)2+1解:(2)函数f(x)=x2+1的定义域为R,当X∈R时,-X∈R=x2+1=f(x)例、判断下列函数的奇偶性:(1)f(x)=x+x3+x5;(2)f(x)=x2+1;(3)f(x)=x+1;(4)f(x)=x2,x∈[-1,2](5)f(x)=0例、判断下列函数的奇偶性:(1)f(x)=x+x3+x5;(2)f(x)=x2+1;(3)f(x)=x+1;(4)f(x)=x2,x∈[-1,2](5)f(x)=0解:(3)函数f(x)=x+1的定义域为R,当X∈R时,-X∈R又因为f(-x)=(-x)+1=-(x-1)而-f(x)=-x-1所以f(-x)≠-f(x)且f(-x)≠f(x)因此函数f(x)=x+1既不是奇函数也不是偶函数。解4)因为2∈[-1,2],而-2[-1,2]所以函数f(x)=x2,x∈[-1,2]既不是奇函数也不是偶函数。例、判断下列函数的奇偶性:(1)f(x)=x+x3+x5;(2)f(x)=x2+1;(3)f(x)=x+1;(4)f(x)=x2,x∈[-1,2](5)f(x)=05)函数f(x)=0的定义域为R,当X∈R时,-X∈R又因为f(-x)=0,f(-x)=0所以f(-x)=-f(x)且f(-x)=f(x)因此函数f(x)=0既是奇函数也是偶函数。用定义法判断或证明函数奇偶性的基本步骤:注意:若可以作出函数图象的,直接观察图象是否关于y轴对称或者关于原点对称。一看看定义域是否关于原点对称二找找关系f(x)与f(-x)三判断下结论奇或偶1、口答下列各题:(1)函数f(x)=x是奇函数吗?(2)函数g(x)=2是奇函数还是偶函数?(3)如果y=h(x)是偶函数,当h(-1)=2时,h(1)的值是多少?(1)、f(x)=x是奇函数(2)、g(x)=2是偶函数(3)、h(1)=h(-1)=22、已知f(x)是奇函数,g(x)是偶函数,如图(1)、(2)分别是他们的局部图象,试求f(-2),g(1),并把这两个函数的图象补充完整。x43210-1-2-3-4213-3y-2-1f(x)(1)3210-1-323-3-2-14y1-2x(2)g(x)f(-2)=-f(2)=-2g(1)=g(-1)=1x43210-1-2-3-4213-3y-2-1f(x)(1)x3210-1-323-3-2-14y1-2g(x)(2)课堂小结:1、一般地,如果对于函数f(x)定义域中的任意一个x,都有f(-x)=-f(x),那么函数f(x)就叫做奇函数;如果对于函数定义域中的任意一个x,都有f(-x)=f(x),那么函数f(x)就叫做偶函数。2、一个函数是奇函数的充要条件是,它的图象是以坐标原点为对称中心的中心对称图形;一个函数是偶函数的充要条件是,它的图象是以y轴为对称轴的轴对称图形。图象关于y轴对称f(-x)=f(x)偶函数图象关于原点对称f(-x)=-f(x)奇函数4、根据定义判断函数奇偶性的方法和步骤:第一步,先写出函数的定义域;第二步,判断函数的定义域是否关于原点对称,若不对称,则函数既不是奇函数也不是偶函数;若是对称,进行第三步;第三步,判断f(-x)与f(x)的关系,若f(-x)=-f(x),则是奇函数,若f(-x)=f(x),则是偶函数,若f(-x)=-f(x),且f(-x)=f(x),则既是奇函数又是偶函数,若f(-x)≠-f(x),且f(-x)≠f(x),则既不是奇函数也不是偶函数。3、对于一个函数来说,它的奇偶性有四种可能:是奇函数但不是偶函数;是偶函数但不是奇函数;既是奇函数又是偶函数;既不是奇函数也不是偶函数。课堂小结:
本文标题:函数的奇偶性.ppt
链接地址:https://www.777doc.com/doc-7240358 .html