您好,欢迎访问三七文档
当前位置:首页 > 建筑/环境 > 房地产 > 行人检测与跟踪国内外研究现状
行人检测与跟踪国内外研究现状1.2行人检测与跟踪国内外研究现状视觉跟踪和目标检测是计算机视觉领域内较早开始的研究方向。经过几十年的积累,这两个方向已经取得了显著的发展。然而,很多方法只是在相对较好地程度上解决了一些关键问题。并且仍旧有不少一般性的关键问题未得到有效的解决。国内外很多研究机构都在致力于研究和发展这两个方向。近些年这两个方向持续发展,涌现了很多比较优秀的方法。国外的很多大学和研究机构(如卡内基梅隆大学、南加州大学和法国国家计算机科学与控制研究所等)都有计算机视觉小组,长期地研究视频跟踪和目标检测。国内的很多大学和研究所等(如清华大学、上海交大和自动化所等)也有相关的研究小组,并取得了一些优秀的研究成果。1.2.1行人检测技术国内外研究现状中科院计算机科学重点实验室孙庆杰等人利用基于侧影的人体模型及其对应的概率模型,提出了一种基于矩形拟合的人体检测算法。中科院自动化所谭铁牛等对人运动进行视觉分析,其核心是利用计算机视觉技术从图像序列中检测、跟踪、识别人并对其行为进行理解与描述,它主要应用在视觉监控领域和基于步态的身份鉴定。步态识别就是根据人们走路的姿势进行身份鉴定,依据人体行走运动很大程度上依赖于轮廓随着时间的形状变化的直观想法,提出一种基于时空轮廓分析的步态识别算法;基于行走运动的关节角度变化包含着丰富的个体识别信息的思想,提出一种基于模型的步态识别算法。实验结果表明该算法不仅获得了令人鼓舞的识别性能,而且拥有相对较低的计算代价。但是该方法只能检测出运动的行人。西安交通大学郑南宁等研究了利用支持向量机识别行人的方法,通过稀疏Gabor滤波器提取行人样本图像中行人的特征,然后利用支持向量机来训练所提取的样本特征,并用训练得到的分类器通过遍历图像的方式将图像中可能属于行人的窗口提取出来。尽管用Gabor滤波器提取特征效果相对较好,但耗时很长,不适合于实时图像的处理。上海交通大学田广等提出了一种coarse-to-fine的行人检测方法,将一个人建模成人体自然部位的组装,人体的所有部位包括头肩、躯干和腿、采用绝对值类Haar特征集和Edgelet特征集,在这些特征集上,采用softcascade训练各个部位的检测器和全身检测器。首先采用全身检测器在整个图像中产生候选行人区域,然后用基于贝叶斯决策的组合算法进一步确定候选区域中的行人。实验结果表明该算法有很好的检测性能能在杂乱的自然场景中有效的检测行人。但该方法的识别率是78.3%,识别率不高,且该模型比较难构建,模型求解也比较复杂。目前,在国外许多文献中提出了基于机器视觉的行人检测方法,意大利帕尔玛大学的AlbertoBroggi教授在ARGO项目中采用一种基于外形的行人检测算法。算法首先根据行人相对于垂直轴有很强的垂直边缘对称性、尺寸和外貌比例等在图像中找到感兴趣区域,然后提取垂直边缘,选择具有高垂直对称性的区域。通过计算边缘的熵值去掉图像中始终一致的区域。在剩下的具有对称性的候选区域中,寻找目标侧向和底部边界画出矩形方框,通过包含行人头部模型匹配定位行人头部。在市区试验表明,当视野中有完整的行人存在时能得到较好的效果,在10一40m的范围内都可以正确地进行识别,并且可以较好地适应复杂的外界环境。美国麻省理工学院的M.Oren与C.Papageorgiou建立了Haar小波模板,并将其应用于行人检测当中,Haar小波模板常用于表达简单的物体,具有有效、快速检测的特点,现已被广泛的应用于图像的物体检测中,同样Haar小波模板行人检测算法也成为行人检测领域经典算法之一。法国的NavneetDalal和BillTriggs使用梯度方向直方图(HOG)来表示人体特征,并在INRIAPerson样本库上进行了验证。此方法检测率高,在人体检测方面有着很强的适用性,同样的该算法在道路行人检测也有很强表现力,现已引起很多学者的关注。伊利诺伊大学的Niebles.J.C等人,提出了一种使用AdaBoost级联模型的行人识别算法,并将该识别算法应用到行人检测领域,使得行人检测识别效果有所改进。
本文标题:行人检测与跟踪国内外研究现状
链接地址:https://www.777doc.com/doc-7240429 .html