您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 《高中理科数学》PPT课件
第3讲函数的奇偶性与周期性[最新考纲]1.结合具体函数,了解函数奇偶性的含义.2.会运用函数的图象理解和研究函数的奇偶性.3.了解函数周期性、最小正周期的含义,会判断、应用简单函数的周期性.知识梳理1.函数的奇偶性奇偶性定义图象特点偶函数如果对于函数f(x)的定义域内任意一个x,都有,那么函数f(x)是偶函数关于对称奇函数如果对于函数f(x)的定义域内任意一个x,都有,那么函数f(x)是奇函数关于对称f(-x)=f(x)f(-x)=-f(x)y轴原点2.奇(偶)函数的性质(1)奇函数在关于原点对称的区间上的单调性,偶函数在关于原点对称的区间上的单调性(填“相同”、“相反”).(2)在公共定义域内①两个奇函数的和函数是,两个奇函数的积函数是.②两个偶函数的和函数、积函数是.③一个奇函数,一个偶函数的积函数是.(3)若函数f(x)是奇函数且在x=0处有定义,则f(0)=.相同相反奇函数偶函数偶函数奇函数03.周期性(1)周期函数:对于函数y=f(x),如果存在一个非零常数T,使得当x取定义域内的任何值时,都有f(x+T)=,那么就称函数y=f(x)为周期函数,称T为这个函数的周期.(2)最小正周期:如果在周期函数f(x)的所有周期中的正数,那么这个最小正数就叫做f(x)的最小正周期.f(x)存在一个最小辨析感悟1.对奇偶函数的认识及应用(1)函数y=x2,x∈(0,+∞)是偶函数.(×)(2)偶函数图象不一定过原点,奇函数的图象一定过原点.(×)(3)(教材习题改编)如果函数f(x),g(x)为定义域相同的偶函数,则F(x)=f(x)+g(x)是偶函数.(√)(4)若函数y=f(x+a)是偶函数,则函数y=f(x)关于直线x=a对称.(√)(5)(2013·山东卷改编)已知函数f(x)为奇函数,且当x>0时,f(x)=x2+1x,则f(-1)=-2.(√)(6)(2014·菏泽模拟改编)已知函数y=f(x)是定义在R上的偶函数,且在(-∞,0)上是减函数,若f(a)≥f(2),则实数a的取值范围是[-2,2].(×)2.对函数周期性的理解(7)函数f(x)在定义域上满足f(x+a)=-f(x),则f(x)是周期为2a(a>0)的周期函数.(√)(8)(2014·枣庄一模改编)若y=f(x)既是周期函数,又是奇函数,则其导函数y=f′(x)既是周期函数又是奇函数.(×)[感悟·提升]1.两个防范一是判断函数的奇偶性之前务必先考查函数的定义域是否关于原点对称,若不对称,则该函数一定是非奇非偶函数,如(1);二是若函数f(x)是奇函数,则f(0)不一定存在;若函数f(x)的定义域包含0,则必有f(0)=0,如(2).2.三个结论一是若函数y=f(x+a)是偶函数,则函数y=f(x)关于直线x=a对称;若函数y=f(x+b)是奇函数,则函数y=f(x)关于点(b,0)中心对称,如(4);二是若对任意x∈D都有f(x+a)=-f(x),则f(x)是以2a为周期的函数;若对任意x∈D都有f(x+a)=±1fx(f(x)≠0),则f(x)也是以2a为周期的函数,如(7);三是若函数f(x)既是周期函数,又是奇函数,则其导函数y=f′(x)既是周期函数又是偶函数,如(8)中因为y=f(x)是周期函数,设其周期为T,则有f(x+T)=f(x),两边求导,得f′(x+T)(x+T)′=f′(x),即f′(x+T)=f′(x),所以导函数是周期函数,又因为f(x)是奇函数,所以f(-x)=-f(x),两边求导,得f′(-x)(-x)′=-f′(-x)=-f′(x),即-f′(-x)=-f′(x),所以f′(-x)=f′(x),所以导函数是偶函数.考点一函数奇偶性的判断及应用【例1】(1)判断下列函数的奇偶性:①f(x)=x2-1+1-x2;②f(x)=ln1-x1+x.(2)已知函数f(x)=ln(1+9x2-3x)+1,则f(lg2)+f(lg12)=().A.-1B.0C.1D.2(1)解①由x2-1≥0,1-x2≥0得x=±1.∴f(x)的定义域为{-1,1}.又f(1)+f(-1)=0,f(1)-f(-1)=0,即f(x)=±f(-x).∴f(x)既是奇函数又是偶函数.②由1-x1+x>0,得-1<x<1,即f(x)=ln1-x1+x的定义域为(-1,1),又f(-x)=ln1+x1-x=ln1-x1+x-1=-ln1-x1+x=-f(x),则f(x)为奇函数.(2)解析设g(x)=ln(1+9x2-3x),则g(-x)=ln(1+9x2+3x)=ln11+9x2-3x=-ln(1+9x2-3x)=-g(x).∴g(x)为奇函数.∴f(lg2)+flg12=f(lg2)+f(-lg2)=g(lg2)+1+g(-lg2)+1=g(lg2)-g(lg2)+2=2.答案D规律方法判断函数的奇偶性,其中包括两个必备条件:(1)定义域关于原点对称,这是函数具有奇偶性的必要不充分条件,所以首先考虑定义域;(2)判断f(x)与f(-x)是否具有等量关系.在判断奇偶性的运算中,可以转化为判断奇偶性的等价等量关系式(f(x)+f(-x)=0(奇函数)或f(x)-f(-x)=0(偶函数))是否成立.【训练1】(1)(2014·武汉一模)已知定义在R上的奇函数f(x)和偶函数g(x)满足f(x)+g(x)=ax-a-x+2(a0且a≠1),若g(2)=a,则f(2)=().(2)设f(x)为定义在R上的奇函数.当x≥0时,f(x)=2x+2x+b(b为常数),则f(-1)=().A.-3B.-1C.1D.3A.2B.154C.174D.a2解析(1)∵g(x)为偶函数,f(x)为奇函数,∴g(2)=g(-2)=a,f(-2)=-f(2),∴f(2)+g(2)=a2-a-2+2,①f(-2)+g(-2)=-f(2)+g(2)=a-2-a2+2,②联立①②解得g(2)=2=a,f(2)=a2-a-2(2)因为f(x)为定义在R上的奇函数,所以f(0)=20+2×0+b=0,解得b=-1.所以当x≥0时,f(x)=2x+2x-1,所以f(-1)=-f(1)=-(21+2×1-1)=-3.答案(1)B(2)A=22-2-2=154.考点二函数的单调性与奇偶性【例2】(1)(2014·山东实验中学诊断)下列函数中,在其定义域中,既是奇函数又是减函数的是().A.f(x)=1xB.f(x)=-xC.f(x)=2-x-2xD.f(x)=-tanx(2)(2013·辽宁五校联考)已知f(x)是定义在R上的偶函数,在区间[0,+∞)上为增函数,且f13=0,则不等式f(log18x)>0的解集为().A.12,2B.(2,+∞)C.0,12∪(2,+∞)D.12,1∪(2,+∞)解析(1)f(x)=1x在定义域上是奇函数,但不单调;f(x)=-x为非奇非偶函数;f(x)=-tanx在定义域上是奇函数,但不单调.(2)由已知f(x)在R上为偶函数,且f13=0,∴f(log18x)>0等价于f(|log18x|)>f13,又f(x)在[0,+∞)上为增函数,∴|log18x|>13,即log18x>13或log18x<-13,解得0<x<12或x>2,故选C.答案(1)C(2)C规律方法对于求值或范围的问题,一般先利用函数的奇偶性得出区间上的单调性,再利用其单调性脱去函数的符号“f”,转化为解不等式(组)的问题,若f(x)为偶函数,则f(-x)=f(x)=f(|x|).【训练2】(2014·北京101中学模拟)已知f(x)是定义在R上的奇函数,且当x>0时,f(x)=ex+a,若f(x)在R上是单调函数,则实数a的最小值是().A.-2B.-1C.1D.2解析因为f(x)是R上的奇函数,所以f(0)=0.又f(x)=ex+a在(0,+∞)上是增函数,所以f(x)在R上是增函数,则e0+a=1+a≥0,解得a≥-1,所以a的最小值是-1,故选B.答案B考点三函数的单调性、奇偶性、周期性的综合应用【例3】(经典题)已知定义在R上的奇函数f(x)满足f(x-4)=-f(x),且在区间[0,2]上是增函数,则().A.f(-25)<f(11)<f(80)B.f(80)<f(11)<f(-25)C.f(11)<f(80)<f(-25)D.f(-25)<f(80)<f(11)审题路线f(x-4)=-f(x)――――→令x=x-4f(x-8)=f(x)→结合f(x)奇偶性、周期性把-25,11,80化到区间[-2,2]上→利用[-2,2]上的单调性可得出结论.解析∵f(x)满足f(x-4)=-f(x),∴f(x-8)=f(x),∴函数f(x)是以8为周期的周期函数,则f(-25)=f(-1),f(80)=f(0),f(11)=f(3).由f(x)是定义在R上的奇函数,且满足f(x-4)=-f(x),得f(11)=f(3)=-f(-1)=f(1).∵f(x)在区间[0,2]上是增函数,f(x)在R上是奇函数,∴f(x)在区间[-2,2]上是增函数,∴f(-1)<f(0)<f(1),即f(-25)<f(80)<f(11).答案D规律方法关于奇偶性、单调性、周期性的综合性问题,关键是利用奇偶性和周期性将未知区间上的问题转化为已知区间上的问题.【训练3】(2014·黄冈中学适应性考试)定义在R上的偶函数f(x)满足:f(x+1)=-f(x),且在[-1,0]上是增函数,下列关于f(x)的判断:①f(x)是周期函数;②f(x)的图象关于直线x=2对称;③f(x)在[0,1]上是增函数;④f(x)在[1,2]上是减函数;⑤f(4)=f(0).其中判断正确的序号是________.解析f(x+1)=-f(x)⇒f(x+2)=f(x),故f(x)是周期函数.又f(x)=f(-x),所以f(x+2)=f(-x),故f(x)的图象关于直线x=1对称.同理,f(x+4)=f(x)=f(-x),所以f(x)的图象关于直线x=2对称.由f(x)在[-1,0]上是增函数,得f(x)在[0,1]上是减函数,在[1,2]上是增函数.因此可得①②⑤正确.答案①②⑤1.正确理解奇函数和偶函数的定义,必须把握好两个问题:(1)定义域关于原点对称是函数f(x)为奇函数或偶函数的必要非充分条件;(2)f(-x)=-f(x)或f(-x)=f(x)是定义域上的恒等式.2.奇偶函数的定义是判断函数奇偶性的主要依据.为了便于判断函数的奇偶性,有时需要先将函数进行化简,或应用定义的等价形式:f(-x)=±f(x)⇔f(-x)±f(x)=0⇔f-xfx=±1(f(x)≠0).3.奇函数的图象关于原点对称,偶函数的图象关于y轴对称,反之也成立.利用这一性质可简化一些函数图象的画法,也可以利用它去判断函数的奇偶性.方法优化1——根据函数的奇偶性求参数值【典例】(2011·辽宁卷)若函数f(x)=x2x+1x-a为奇函数,则a=().A.12B.23C.34D.1[一般解法]由题意知f(-x)=-f(x)恒成立,即-x2-x+12-x-a=-x2x+12x-a,即x-12(x+a)=x+12(x-a)恒成立,所以a=12.[优美解法](特值法)由已知f(x)为奇函数得f(-1)=-f(1),即-1-2+1-1-a=-12+11-a,所以a+1=3(1-a),解得a=12.[答案]A[反思感悟]已知函数的奇偶性求参数值一般思路是:利用函数的奇偶性的定义转化为f(-x)=±f(x),从而建立方程,使问题获得解决,但是在解决选择题、填空题时还显得较麻烦,为了使解题更快,可采用特值法
本文标题:《高中理科数学》PPT课件
链接地址:https://www.777doc.com/doc-7248013 .html