您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 管理学资料 > 《概率的基本性质》教学设计
1、《概率的基本性质》教学设计第1页《概率的基本性质》教学设计蓟县第四中学于海存一、说教材:1、教材的地位及作用:本节课是高中数学3(必修)第三章概率的第一节第三课时概率的基本性质,本节课主要是结合具体实例以螺旋上升的方式由浅入深地学习概率的一些基本性质,学生在前面已经学习了集合的表示方法(Venn图)和随机事件的概率,已具有一定的归纳、抽象的能力,这些都是学习本节内容的基础。本节在教材中起着承上启下的作用。一方面把所学的概率知识应用于实际生活,另一方面为今后学习概率其他知识做了理论上的准备。2、教学目标:知识与技能:(1)了解事件之间的相互包含关系、相等关系,知到和事件、积事件的意义,(2)通过实例,理解互斥事件、对立事件的概念及实际意义;(3)掌握概率的几个基本性质并能简单应用。过程与方法:类比集合,揭示事件的关系与运算,培养学生的类比与归纳的数学思想,情感态度与价值观:通过各种有趣的,贴近学生生活的素材,激发学生学习数学的热情和兴趣,在参与探究活动中,培养学生的合作精神.在观察发现中树立探索精神,在探索成功后体验学习乐趣。3、教学重点与难点:根据本节课内容即尚未学习排列组合,以及学。
2、生的心理特点和认知水平,制定如下教学重难点。重点:互斥事件、对立事件的概念及概率的加法公式的应用。难点:正确理解和事件与积事件,以及互斥事件与对立事件的区别与联系.4、课时安排:1课时二、说教法:根据本节课的内容、教学目标和学生的实际水平等因素,在教法上,本节课我采用“开放性教学”,充分了解学生的最近发展区,精心创设问题情景,以导为主,重视多媒体的作用,充分调动学生,展示学生的思维过程,使学生能准确理解、判断和运用所学知识。1)立足基础知识和基本技能,掌握好典型例题,做到重点突出;2)紧扣数学的实际背景,多采用学生日常生活中熟悉的例子来突破难点。三、说学法:引导学生用观察、类比、归纳、推导方式来实现预定教学目标。创设、再现知识发生的情境,让每个学生都能动手、动笔、动口、动脑、动心、动情。从而在知识产生迁移中发现规律,进一步把知识纳入学生已有认知结构中,形成新的认知结构。达到教育学“最近发展区”要求,并培养学生学会观察、分析、归纳、等适应客观世界的思维方法,养成良好学习习惯和思维习惯。四、说教学程序:《概率的基本性质》教学设计第2页教学环节教学程序及设计设计意图及评价分析创设问题情境俗俗。
3、话话说说““三三个个臭臭皮皮匠匠顶顶个个诸诸葛葛亮亮””能能顶顶上上吗吗??在在一一次次有有关关““三三国国演演义义””的的知知识识竞竞赛赛中中,,三三个个臭臭皮皮匠匠AA、、BB、、CC能能答答对对题题目目的的概概率率PP((AA))==11//33,,PP((BB))==11//44,,PP((CC))==11//55,,(他们能答对的题目不重复)诸诸葛葛亮亮DD能能答答对对的的概概率率PP((DD))==22//33,,如如果果三三个个臭臭皮皮匠匠组组成成一一组组与与诸诸葛葛亮亮比比赛赛,,答答对对题题目目多多者者为为胜胜,,问问哪哪方方胜胜??调动学生的学习热情,引起学生的注意。为本节课的学习做有利的准备.提供背景材料我们知道,一个事件可能包含试验的多个结果。比如在掷骰子这个试验中:“出现的点数小于或等于3”这个事件中包含了哪些结果呢?解:①“出现的点数为1”②“出现的点数为2”③“出现的点数为3”这三个结果这样我们把每一个结果可看作元素,而每一个事件可看作一个集合。因此。事件之间的关系及运算几乎等价于集合之间的关系与运算。操作方法:学生思考,个别回答。目的:站在学生思维的最近。
4、发展区上,选择一个单一而具体的问题为突破点,直奔主题同时引入集合这一研究的工具形成类比,突出了探索的方向性深入探究探究:在掷骰子试验中,可以定义许多事件例如C1={出现1点};C2={出现2点};C3={出现3点};C4={出现4点};C5={出现5点};C6={出现6点};D1={出现的点数不大于1};D2={出现的点数大于3};D3={出现的点数小于5};E={出现的点数小于7};F={出现的点数大于6};G={出现的点数为偶数};H={出现的点数为奇数};类比集合与集合的关系、运算,你能发现事件之间的关系与运算吗?操作方法:学生讨论后列举事件,教师引导并大屏幕展示。学生通过讨论,一方面活跃了课堂气氛,另一方面增强了信心由于事件是由学生自己列举出来的所以对事件的含义理解更透彻,有利于发现事件之间的关系.《概率的基本性质》教学设计第3页习的新知(一)、事件的关系与运算例:C1={出现1点};D3={出现的点数小于5};1.包含关系对于事件A与事件B,如果事件A发生,则事件B一定发生,这时称事件B包含事件A(或称事件A包含于事件B).记作:BA(或AB)如:D3C1或C1D3注。
5、:图形表示:由特殊到一般学生自然得出事件包含关系的特征。与集合的包含关系形成类比,强化了概念的理解。类比学习例:C1={出现1点};D1={出现的点数不大于1};2.相等事件一般地,若BA,且AB,那么称事件A与事件B相等。记作:A=B.如:C1=D1注:(1)图形表示:通过事件包含关系的学习学生很容易归纳出相等事件的特征。学生了解了探究问题的方法,为下一步研究和事件,积事件打下了基础。类比学习例:C1={出现1点};C5={出现5点};J={出现1点或5点}.3.并(和)事件若某事件发生当且仅当事件A或事件B发生,则称此事件为事件A与事件B的并事件(或和事件).记作:AB(或A+B)如:C1C5=J图形表示:师生共同分析得到并(和)事件的定义。此时学生能够自主探究,积极性大增,也加深了对概念的理解。类比学习例:C3={出现的点数大于3};D3={出现的点数小于5};C4={出现4点};4.交(积)事件若某事件发生当且仅当事件A发生且事件B发生,则称此事件为事件A与事件B的交事件(或积事件).如:C3D3=C4图形表示:学生观察--独立思考--代表发言将学习的自主权交给学生,。
6、教师只需做好引导。ABB(A)ABAB《概率的基本性质》教学设计第4页类比学习例:C1={出现1点};C3={出现3点};5.互斥事件若AB为不可能事件(AB=)那么称事件A与事件B互斥.如:C1C3=注:事件A与事件B互斥时两事件同时发生的概率为0,也有可能两个事件均不发生。图形表示:学生观察--独立思考--代表发言--教师引导类比学习例:G={出现的点数为偶数};H={出现的点数为奇数};6.对立事件若AB为不可能事件,AB为必然事件,那么事件A与事件B互为对立事件如:事件G与事件H互为对立事件注:事件A与事件B在任何一次试验中有且仅有一个发生。图形表示:学生观察--独立思考--代表发言教师强调对立事件的特点。应用提高1.给定下列命题判断对错。1)互斥事件一定对立;2)对立事件一定互斥;3)互斥事件不一定对立;2.一个射手进行一次射击,是判断下列事件那些是互斥事件?那些是对立事件?1)事件A:命中环数大于72)事件B:命中环数为10环3)事件C:命中环数小于64)事件D:命中环数为6、7、8、9、10通过判断,明晰互斥事件和对立事件之间的关系。通过练习巩固定义,突破难。
7、点,明确目标。ABAB《概率的基本性质》教学设计第5页概率基本性质(二)、概率的几个基本性质1.概率P(A)的取值范围(1)0≤P(A)≤1.(2)必然事件的概率是1.(3)不可能事件的概率是0.探究:掷一枚骰子,事件C1={出现1点},事件C3={出现3点}则事件C1C3发生的频率与事件C1和事件C3发生的频率之间有什么关系?结论:当事件A与事件B互斥时2.概率的加法公式:如果事件A与事件B互斥,则P(AB)=P(A)+P(B)3.对立事件的概率公式若事件A,B为对立事件,则P(B)=1-P(A)学生在教师的引导下对上述事件进行归纳概括产生概率基本性质类比频率的性质探究概率的基本性质。学生在教师的引导下做好由事件向概率的过渡,并通过推倒理解公式的含义。应用提高例如果从不包括大小王的52张扑克牌中随机抽取一张,那么取到红心(事件A)的概率是1/4,取到方片(事件B)的概率是1/4。问:1)取到红色牌(事件C)的概率是多少?2)取到黑色牌(事件D)的概率是多少?用自己的研究成果解决问题,让学生感受知识的力量,享受成功的乐趣,同时也将概率的加法公式进行推广。应用提高在在一一次次有有关关。
8、““三三国国演演义义””的的知知识识竞竞赛赛中中,,三三个个臭臭皮皮匠匠AA、、BB、、CC能能答答对对题题目目的的概概率率PP((AA))==11//33,,PP((BB))==11//44,,PP((CC))==11//55,,(他们能答对的题目不重复)诸诸葛葛亮亮DD能能答答对对的的概概率率PP((DD))==22//33,,如如果果三三个个臭臭皮皮匠匠组组成成一一组组与与诸诸葛葛亮亮比比赛赛,,答答对对题题目目多多者者为为胜胜,,问问那那方方胜胜??答:因为三个臭皮匠A、B、C能答对题目彼此互斥(他们能答对的题目不重复),则组织学生用刚才研究的成果解决刚上课时我们提出的问题,进一步调动学生思维(B)(A)B)(Afffnnn《概率的基本性质》教学设计第6页)(6047)()()()(DPCPBPAPCBAP,故三个臭皮匠方为胜方,即三个臭皮匠顶上一个诸葛亮。检测反馈1.某射手射击一次射中10环、9环、8环、7环的概率分别是0.24、0.28、0.19、0.16,计算这名射手射击一次(1)射中10环或9环的概率;(2)至少射中7环的概率.(3)射中环数不足8环。
9、的概率.2.甲、乙两人下棋,和棋的概率为1/2,乙胜的概率为1/3,求:(1)甲胜的概率;(2)甲不输的概率。进一步巩固所学知识,检验课堂效果。课堂小结通过这一节学习,你有哪些收获?(比如知识、方法、能力、兴趣等)让学生从不同角度总结自己的新收获,使学生学会总结、学会欣赏、学会科学的评价。作业p128习题3.1A组1,B组1,2研究性作业:习题3.1B组3作业全面覆盖了本节课的知识,让学生在学到知识的满足感和学有所用的心情中再次接受挑战,对所学知识起到巩固的作用,为下节课的学习做铺垫。板书设计3.1.3概率的基本性质1.包含关系2.相等事件例题板演屏幕投影3.并(和)事件4.交(积)事件5.互斥事件6.对立事件7.概率的几个基本性质。
本文标题:《概率的基本性质》教学设计
链接地址:https://www.777doc.com/doc-7261559 .html