您好,欢迎访问三七文档
当前位置:首页 > 临时分类 > 数值分析A-作业5-2011210287-李国轩-15-12-2013
数值分析A-第05次作业李国轩,机研113,2011210287,15.12.201301.定义2:fRR如下:121221,when=0(,),when=01,inothercasesxxfxxxx,证明1(0)fx与2(0)fx均存在,但f在点(0,0)处不可导。证明:由已知可得到111100111(,0)(0)0(0)limlim1hhfhfhfxhh类似的又有212200222(0,)(0)0(0)limlim1hhfhfhfxhh于是可见1(0)fx与2(0)fx均存在。而当取12(,)hhh,同时120hh,原函数的导数为100001()(0)111limlimlimlimhhhhfhfhhhh上面式子中的这个极限显然是不存在的,于是原函数在点(0,0)处不可导。原题得证。04.证明由()ln(1)xGxe定义的函数G:RR,在任何闭区间[a,b]上是压缩的,但没有不动点。证明:反证法来证明可压缩性。假设存在常数1m和在区间[,]ab上的两个点x和y,使得下面的式子成立()()GxGymxy为了在后续的化简过程中过程简单,这里假设xy于是1()()ln(1)ln(1)()1xxxyyyeeGxGymxyeemxyyxee可见这里与原建设xy矛盾。因此压缩性得证。同时,假设存在不动点,即存在*x满足下面的式子。******()ln(1)1xxxGxxexee显然矛盾,因此原函数没有不动点。09.给定非线性方程组:1121122122120.7sin0.2cos(,)0.7cos0.2sin(,)xxxgxxxxxgxx(1)应用压缩映射定理证明12(,)Ggg在1212{(,)|0,1.0}Dxxxx中有唯一不动点。(2)用不动点迭代法求方程组的解,使131102kkxx时停止迭代。(1)证明:首先来证明映内性。由已知12,0,1xx,同时1sin[0,sin1]x且2cos[cos1,1]x,于是容易得到121210.2cos10.7sin0.2cos0.20.7sin10.10810.7sin0.2cos0.78900.10810.7890xxxxg可见g1满足映内性,类似得可以得到10.20990.7000g可见g2满足映内性,于是G的映内性得到证明。再来证明压缩性。由已知可以得到11221121212121111112222221122()()0.7sin0.2cos0.7sin0.2cos0.7cos0.2sin0.7cos0.2sin1.4sin(cossin)0.4sin(cossin2222221.42sin(1)0.4242GyGxgygxgygxxxyyxxyyxyxyxyxyxyxyxyxy112212sin(1)40.96720.27640.97xyxyxy可见,原非线性方程组满足压缩性。根据压缩映射原理可知,G(x)在D上有唯一不动点。于是原题得证。(2)解:取(0)(0,0)Tx,由已给出的关系式(1)()(),0,1,2,...kkxGxk,迭代可以得到(1)(0.2000,0.7000)Tx,(2)(0.2920,0.5572)Tx,(3)(0.3713,0.5646)Tx,(4)(0.4229,0.5453)Tx,(5)(0.4583,0.5346)Tx,(6)(0.4818,0.5259)Tx,(7)(0.4973,0.5199)Tx,(8)(0.5075,0.5158)Tx,(9)(0.5142,0.5131)Tx,(10)(0.5185,0.5133)Tx,(11)(0.5213,0.5101)Tx,(12)(0.5232,0.5093)Tx,(13)(0.5244,0.5088)Tx,(14)(0.5252,0.5085)Tx,(15)(0.5256,0.5083)Tx,(16)(0.5259,0.5082)Tx可见(16)(15)33121101052xx,满足要求,停止迭代。10(2).用牛顿法求下列非线性方程组的解,迭代到151102kkxx为止。22(0)122312130,(0.8,0.4)310,Txxxxxx取由已知可到的2212231213()31xxFxxxx,(0)1.76()1.128Fx12'22211262()336xxFxxxxx,'(0)4.80.8()1.441.92Fx而(0)(0.8,0.4)Tx,方程'(0)(0)(0)()()FxxFx,即(0)4.80.81.761.441.921.128x可求出(0)(0.307143,0.357143)Tx,用牛顿法'()()()()()kkkFxxFx,(1)()()kkkxxx反复迭代,直到满足关系式()(1)51102kkxx,迭代结果如下k0123451()kx0.80.4928570.5007340.5000060.5000000.500000()2kx0.40.7571430.8751870.8660830.8660250.8660025
本文标题:数值分析A-作业5-2011210287-李国轩-15-12-2013
链接地址:https://www.777doc.com/doc-7267776 .html