您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 其它文档 > 数学分析十讲习题册答案
1111/27272727习题1-11.计算下列极限(1)limxaxaaxxa→−−,0;a解:原式lim[]xaaaxaaaxaxaxa→−−=−−−=()|()|xaxaxaax==′′−=1lnaaaaaa−−⋅=(ln1)aaa−(2)sinsinlimsin()xaxaxa→−−;解:原式sinsinlimxaxaxa→−=−(sin)'cosxaxa===(3)21lim(2),0;nnnnaaa→∞+−解:原式211lim()1/nnnana→∞−=20[()']xxa==2lna=(4)1lim[(1)1]pnnn→∞+−,0;p解:原式111(1)1lim()|pppxnnnx=→∞+−′===11pxpxp−==(5)10100(1tan)(1sin)lim;sinxxxx→+−−解:原式101000(1tan)1(1sin)1limlimtansinxxxxxx→→+−−−=−−=990010(1)|10(1)|20tttt==+++=(6)11lim1mnxxx→−−,,mn为正整数;解:原式111lim11mnxxxxx→−−=−−i1111()'()'mxnxxx===nm=2.设()fx在0x处二阶可导,计算00020()2()()limhfxhfxfxhh→+−+−.解:原式000()()lim2hfxhfxhh→′′+−−=00000()()()()lim2hfxhfxfxfxhh→′′′′+−+−−=000000()()()()limlim22hhfxhfxfxhfxhh→→′′′′+−−−=+−00011()()()22fxfxfx′′′′′′=+=2222/272727273.设0a,()0fa,()fa′存在,计算1lnln()lim[]()xaxafxfa−→.解:1lnln()lim[]()xaxafxfa−→ln()ln()lnlnlimfxfaxaxae−−→=ln()ln()limlnlnxafxfaxae→−−=ln()ln()limlnlnxafxfaxaxaxae→−−−−=i'()()faafae=i习题1-21.求下列极限(1)lim(sin1sin1)xxx→+∞+−−;解:原式1limcos[(1)(1)]02xxxξξ→+∞=+−−=i,其中ξ在1x−与1x+之间(2)40cos(sin)coslimsinxxxx→−;解:原式=40sin(sin)limxxxxξ→−−=30sinsinlim()()()xxxxxξξξ→−−⋅=16,其中ξ在x与sinx之间(3)666565lim();xxxxx→+∞+−−解:原式116611lim[(1)(1)]xxxx→+∞=+−−56111lim(1)[(1)(1)]6xxxxξ−→+∞=⋅+⋅+−−5611lim(1)33xξ−→+∞=+=,其中ξ在11x−与11x+之间(4)211lim(arctanarctan);1nnnn→+∞−+解:原式22111lim()11nnnnξ→+∞=−++i1=,其中其中ξ在11n+与1n之间2.设()fx在a处可导,()0fa,计算11()lim()nnnnfafa→∞⎡⎤+⎢⎥−⎣⎦.解:原式1111(ln()ln())lim(ln()ln())limnnfafanfafannnnnee→∞+−−+−−→∞==11ln()ln()ln()ln()[limlim]11nnfafafafannnne→∞→∞+−−−+−=()()2()()()()fafafafafafaee′′′+==习题1-31-31-31-31111.求下列极限3333/27272727(1111)0(1)1lim(1)1xxxλµ→+−+−,,,,0;µ≠解:原式0limxxxλλµµ→==(2222)201coscos2coslim11xxxnxx→−⋅⋅⋅+−;;;;解:02lncoscos2coslim12xxxnxIx→−⋅⋅⋅=20lncoslncos2lncos2limxxxnxx→++⋅⋅⋅+=−20cos1cos21cos12limxxxnxx→−+−+⋅⋅⋅+−=−22220(2)()limxxxnxx→++⋅⋅⋅+=21nii==∑(3333)011lim)1xxxe→−−(;;;;解:原式01lim(1)xxxexxe→−−=−201limxxexx→−−=01lim2xxex→−=01lim22xxx→==(4444)112lim[(1)]xxxxxx→+∞+−;解:原式11ln(1)ln2lim()xxxxxxee+→+∞=−21lim(ln(1)ln)xxxxx→+∞=+−i1limln(1)xxx→+∞=+1lim1xxx→+∞==2.2.2.2.求下列极限(1111)22201coslncoslimsinxxxxxeex−→−−−−;;;;解:原式222201122lim12xxxxx→+==−(2222)0ln()2sinlimsin(2tan2)sin(tan2)tanxxxexxxx→++−−;解:原式0ln(11)2sinlimsin(2tan2)sin(tan2)tanxxxexxxx→++−+=−−012sinlimsin(2tan2)sin(tan2)tanxxxexxxx→+−+=−−02lim442xxxxxxx→++==−−习题1-41-41-41-41111.求下列极限(1111)21lim(1sin)nnnn→∞−;4444/27272727解:原式2331111lim[1(())]3!nnnonnn→∞=−−+11lim((1))3!6no→∞=+=(2222)求33601limsinxxexx→−−;解:原式3636336600()112limlim2xxxxxoxxexxx→→++−−−===(3333)21lim[ln(1)]xxxx→∞−+;解:原式222111lim[(())]2xxxoxxx→∞=−−+12=(4444)21lim(1)xxxex−→+∞+;解:原式211[ln(1)]2limxxxxee+−−→∞==此题已换3333.设()fx在0x=处可导,(0)0f≠,(0)0f′≠.若()(2)(0)afhbfhf+−在0h→时是比h高阶的无穷小,试确定,ab的值.解:因为()(0)(0)()fhffhoh′=++,(2)(0)2(0)()fhffhoh′=++所以00()(2)2(0)(1)(0)(2)(0)()0limlimhhafhbfhfabfabfohhh→→′+−+−+++==从而10ab+−=20ab+=解得:2,1ab==−3333.设()fx在0x处二阶可导,用泰勒公式求00020()2()()limhfxhfxfxhh→+−+−解:原式222200001000220''()''()()'()()2()()'()()2!2!limhfxfxfxfxhhohfxfxfxhhohh→+++−+−++=22201220''()()()limhfxhohohh→++=0''()fx=4.4.4.4.设()fx在0x=处可导,且20sin()lim()2.xxfxxx→+=求(0),(0)ff′和01()limxfxx→+.解因为2200sin()sin()2lim()limxxxfxxxfxxxx→→+=+=[]220()(0)(0)()limxxoxxffxoxx→′++++=2220(1(0))(0)()limxfxfxoxx→′+++=5555/27272727所以1(0)0,(0)2ff′+==,即(0)1,(0)2ff′=−=所以01()limxfxx→+01(0)(0)()limxffxoxx→′+++=02()lim2xxoxx→+==习题1-51.计算下列极限(1)1112limnnn→∞+++⋯;;解:原式11lim1nnnn→∞+=+−1lim21nnnn→∞++==+(2)2212lim(1)nnnaanaana+→∞+++⋅⋅⋅+解:原式21lim(1)nnnnnanana++→∞=−−2lim(1)nnnana→∞=−−21aa=−2.设limnnaa→∞=,求(1)1222limnnaanan→∞+++⋯;解:原式22lim(1)nnnann→∞=−−lim212nnnaan→∞==−(2)12lim111nnnaaa→∞+++⋯,0,1,2,,.iain≠=⋯解:由于1211111limlimnnnnaaanaa→∞→∞+++==⋯,所以12lim111nnnaaaa→∞=+++⋯3.设2lim()0nnnxx−→∞−=,求limnnxn→∞和1limnnnxxn−→∞−.解:因为2lim()0nnnxx−→∞−=,所以222lim()0nnnxx−→∞−=且2121lim()0nnnxx+−→∞−=从而有stolz定理2222limlim022nnnnnxxxn−→∞→∞−==,且212121limlim0212nnnnnxxxn++−→∞→∞−==+所以lim0nnxn→∞=,111limlimlim01nnnnnnnxxxxnnnnn−−→∞→∞→∞−−=−=−6666/272727274.设110xq,其中01q≤,并且1(1)nnnxxqx+=−,证明:1limnnnxq→∞=.证明:因110xq,所以211211(1)111(1)()24qxqxxxqxqqq+−=−≤=,所以210xq,用数学归纳法易证,10nxq。又111nnnxqxx+=−,从而nx单调递减,由单调有界原理,limnnx→∞存在,记limnnxL→∞=在1(1)nnnxxqx+=−两边令n→∞,可得lim0nnx→∞=所以11limlimlim111nnnnnnnnnxxxx→∞→∞→∞+==−11(1)limlim(1)nnnnnnnnnnnnxxxxqxxxxxqx+→∞→∞+−==−−−11limnnqxqq→∞−==习题1-61-61-61-61.1.1.1.设()fx在(,)a+∞内可导,且()lim,xfxAx→+∞=lim()xfx→+∞′存在.证明:lim().xfxA→+∞′=证明:()()limlimlim()1xxxfxfxAfxx→+∞→+∞→+∞′′===2.2.2.2.设()fx在(,)a+∞上可微,lim()xfx→+∞和lim()xfx→+∞′存在.证明:lim()0xfx→+∞′=.证明:记lim()xfxA→+∞=(有限),lim()xfxB→+∞′=(有限),则()()()lim()limlimxxxxxxxxefxefxefxAfxABee→+∞→+∞→+∞′+====+从而0B=所以lim()0xfx→+∞′=3.3.3.3.设()fx在(,)a+∞上可导,对任意的0α,lim[()()]xfxxfxαβ→+∞′+=,证明:lim()xfxβα→+∞=.7777/27272727证明:因为0α,所以limxxα→+∞=+∞,由广义罗必达法则得()lim()limxxxfxfxxαα→+∞→+∞=11()()limxxfxxfxxααααα−−→+∞′+=lim[()()]xxfxfxα→+∞′=+βα=4444.设()fx在(,)a+∞上存在有界的导函数,证明:()lim0lnxfxxx→+∞=.证明:()()limlimlnln1xxfxfxxxx→+∞→+∞′=+,()fx′有界,1lim0ln1xx→+∞=+,所以()()limlim0lnln1xxfxfxxxx→+∞→+∞′==+习题2-1(此题已换)1.若自然数n不是完全平方数,证明n是无理数.1.证明3是无理数证明:反证法.假若3qp=,,(Nqp∈且qp,互质),于是由223pq=可知,2q是2p的因子,从而得12=q即23p=,这与假设矛盾2.求下列数集的上、下确界.(1)11,nNn⎧⎫−∈⎨⎬⎩⎭解:1,inf0supEE==(2)
本文标题:数学分析十讲习题册答案
链接地址:https://www.777doc.com/doc-7270389 .html