您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > (完整版)等比数列性质及其应用知识点总结与典型例题(经典版)
TheshortestwaytodomanythingsistoonlyonethingatatimeandAllthingsintheirbeingaregoodforsomethingandSufferingisthemostpowerfulteacheroflife第1页共12页等比数列知识点总结与典型例题1、等比数列的定义:,称为公比*12,nnaqqnnNa0且q2、通项公式:,首项:;公比:11110,0nnnnaaaqqABaqABq1aq推广:nmnmnnnmnmmmaaaaqqqaa3、等比中项:(1)如果成等比数列,那么叫做与的等差中项,即:或,,aAbAab2AabAab注意:同号的两个数才有等比中项,并且它们的等比中项有两个((2)数列是等比数列na211nnnaaa4、等比数列的前项和公式:nnS(1)当时,1q1nSna(2)当时,1q11111nnnaqaaqSqq(为常数)11''11nnnaaqAABABAqq,,','ABAB5、等比数列的判定方法:(1)用定义:对任意的,都有为等比数列n11(0){}nnnnnnaaqaqqaaa或为常数,(2)等比中项:为等比数列21111(0){}nnnnnnaaaaaa(3)通项公式:为等比数列0{}nnnaABABa6、等比数列的证明方法:依据定义:若或为等比数列*12,nnaqqnnNa0且1{}nnnaqaa7、等比数列的性质:(2)对任何,在等比数列中,有。*,mnN{}nanmnmaaq(3)若,则。特别的,当时,得*(,,,)mnstmnstNnmstaaaa2mnk注:2nmkaaa12132nnnaaaaaa等差和等比数列比较:等差数列等比数列TheshortestwaytodomanythingsistoonlyonethingatatimeandAllthingsintheirbeingaregoodforsomethingandSufferingisthemostpowerfulteacheroflife第2页共12页经典例题透析类型一:等比数列的通项公式例1.等比数列中,,,求.{}na1964aa3720aa11a思路点拨:由等比数列的通项公式,通过已知条件可列出关于和的二元方程组,解出1aq和,可得;或注意到下标,可以利用性质可求出、,再求.1aq11a19373a7a11a解析:法一:设此数列公比为,则q8191126371164(1)20(2)aaaaqaaaqaq由(2)得:..........(3)241(1)20aqq∴.10a由(1)得:,∴......(4)421()64aq418aq(3)÷(4)得:,42120582qq∴,解得或422520qq22q212q当时,,;22q12a1011164aaq当时,,.212q132a101111aaq定义daann1)0(1qqaann递推公式daann1;mdaanmnqaann1;mnmnqaa通项公式dnaan)1(111nnqaa(0,1qa)中项2knknaaA(0,,*knNkn))0(knknknknaaaaG(0,,*knNkn)前n项和)(21nnaanSdnnnaSn2)1(1)2(111)1(111qqqaaqqaqnaSnnn重要性质),,,,(*qpnmNqpnmaaaaqpnm),,,,(*qpnmNqpnmaaaaqpnmTheshortestwaytodomanythingsistoonlyonethingatatimeandAllthingsintheirbeingaregoodforsomethingandSufferingisthemostpowerfulteacheroflife第3页共12页法二:∵,又,193764aaaa3720aa∴、为方程的两实数根,3a7a220640xx∴或41673aa16473aa∵,∴或.23117aaa271131aaa1164a总结升华:①列方程(组)求解是等比数列的基本方法,同时利用性质可以减少计算量;②解题过程中具体求解时,要设法降次消元,常常整体代入以达降次目的,故较多变形要用除法(除式不为零).举一反三:【变式1】{an}为等比数列,a1=3,a9=768,求a6。【答案】±96法一:设公比为q,则768=a1q8,q8=256,∴q=±2,∴a6=±96;法二:a52=a1a9a5=±48q=±2,∴a6=±96。【变式2】{an}为等比数列,an>0,且a1a89=16,求a44a45a46的值。【答案】64;∵,又an>0,∴a45=421894516aaa∴。34445464564aaaa【变式3】已知等比数列,若,,求。{}na1237aaa1238aaana【答案】或;12nna32nna法一:∵,∴,∴2132aaa312328aaaa22a从而解之得,或,13135,4aaaa11a34a14a31a当时,;当时,。11a2q14a12q故或。12nna32nna法二:由等比数列的定义知,21aaq231aaq代入已知得2111211178aaqaqaaqaqTheshortestwaytodomanythingsistoonlyonethingatatimeandAllthingsintheirbeingaregoodforsomethingandSufferingisthemostpowerfulteacheroflife第4页共12页21331(1)7,8aqqaq211(1)7,(1)2(2)aqqaq将代入(1)得,12aq22520qq解得或2q12q由(2)得或,以下同方法一。112aq1412aq类型二:等比数列的前n项和公式例2.设等比数列{an}的前n项和为Sn,若S3+S6=2S9,求数列的公比q.解析:若q=1,则有S3=3a1,S6=6a1,S9=9a1.因a1≠0,得S3+S6≠2S9,显然q=1与题设矛盾,故q≠1.由得,,3692SSS369111(1)(1)2(1)111aqaqaqqqq整理得q3(2q6-q3-1)=0,由q≠0,得2q6-q3-1=0,从而(2q3+1)(q3-1)=0,因q3≠1,故,所以。312q342q举一反三:【变式1】求等比数列的前6项和。111,,,39【答案】;364243∵,,11a13q6n∴。666111331364112324313S【变式2】已知:{an}为等比数列,a1a2a3=27,S3=13,求S5.【答案】;1211219或∵,,则a1=1或a1=9322273aa31(1)113313aqqqq或TheshortestwaytodomanythingsistoonlyonethingatatimeandAllthingsintheirbeingaregoodforsomethingandSufferingisthemostpowerfulteacheroflife第5页共12页∴.5555191131213121S113913S-或==-【变式3】在等比数列中,,,,求和。{}na166naa21128naa126nSnq【答案】或2,;12q6n∵,∴211nnaaaa1128naa解方程组,得或1112866nnaaaa1642naa1264naa①将代入,得,1642naa11nnaaqSq12q由,解得;11nnaaq6n②将代入,得,1264naa11nnaaqSq2q由,解得。11nnaaq6n∴或2,。12q6n类型三:等比数列的性质例3.等比数列中,若,求.{}na569aa3132310loglog...logaaa解析:∵是等比数列,∴{}na110293847569aaaaaaaaaa∴1032313logloglogaaa553123103563log()log()log910aaaaaa举一反三:【变式1】正项等比数列中,若a1·a100=100;则lga1+lga2+……+lga100=_____________.{}na【答案】100;∵lga1+lga2+lga3+……+lga100=lg(a1·a2·a3·……·a100)而a1·a100=a2·a99=a3·a98=……=a50·a51∴原式=lg(a1·a100)50=50lg(a1·a100)=50×lg100=100。【变式2】在和之间插入三个数,使这五个数成等比数列,则插入的三个数的乘积为83272________。【答案】216;TheshortestwaytodomanythingsistoonlyonethingatatimeandAllthingsintheirbeingaregoodforsomethingandSufferingisthemostpowerfulteacheroflife第6页共12页法一:设这个等比数列为,其公比为,{}naq∵,,∴,183a445127823aaqq48116q294q∴。23362341111aaaaqaqaqaq33389621634法二:设这个等比数列为,公比为,则,,{}naq183a5272a加入的三项分别为,,,2a3a4a由题意,,也成等比数列,∴,故,1a3a5a238273632a36a∴。23234333216aaaaaa类型四:等比数列前n项和公式的性质例4.在等比数列中,已知,,求。{}na48nS260nS3nS思路点拨:等差数列中也有类似的题目,我们仍然采用等差数列的解决办法,即等比数列中前k项和,第2个k项和,第3个k项和,……,第n个k项和仍然成等比数列。解析:法一:令b1=Sn=48,b2=S2n-Sn=60-48=12,b3=S3n-S2n观察b1=a1+a2+……+an,b2=an+1+an+2+……+a2n=qn(a1+a2+……+an),b3=a2n+1+a2n+2+……+a3n=q2n(a1+a2+……+an)易知b1,b2,b3成等比数列,∴,2223112348bbb∴S3n=b3+S2n=3+60=63.法二:∵,∴,22nnSS1q由已知得121(1)481(1)601nnaqqaqq①②②÷①得,即③514nq14nq③代入①得,1641aq∴。3133(1)164(1)6314nnaqSqTheshortestwaytodomanythingsistoonlyonethingatatimeandAllthingsintheirbeingaregoodforsomethingandSufferingisthemostpowerfulteachero
本文标题:(完整版)等比数列性质及其应用知识点总结与典型例题(经典版)
链接地址:https://www.777doc.com/doc-7271430 .html