您好,欢迎访问三七文档
第三部分不定积分第1页共33页1第三部分不定积分[选择题]容易题1—60,中等题61—105,难题106—122.1.设1tancos2xxdxI,则I().(A).Cxxxd21)1(tan211tantan;(B).;1tan2Cx(C).;)1(tan221Cx(D).Cx21)1(tan21.答C2.设12xxdxI,则I()。(A).;11)1(21222Cxxxd(B).;1arcsin)1(122Cxxxdx(C).;arcsinCx(D).Cx1arcsin.答D3.设xdxIsin,则I().(A).Cxsinln;(B).Cxcxtancscln;(C).Cxtanln;第三部分不定积分第2页共33页2(D).Cxxtansecln.答B4.设axdxI2,则I()。(A).Cax2;(B).Cxa21;(C).Cxa2121;(D).Caxaaxaxda2212)2(21.答A5.设dxeeIxx113,则I().(A).Cxeedxeeeexxxxxx221)1)(1(;(B).Cxeexx221;(C).Cxex331;(D).Cxeexx221.答B6.设xdxItan,则().(A).Cxsecln;(B).Cxcosln;(C).Cxsinln;(D).Cxsinln.第三部分不定积分第3页共33页3答D7.设xdxIln则()。(A).CxI1;(B).CxI2)(ln2;(C).CxxIln;(D).CxxxIln答D8.设xdxIarctan,则I().(A).Cx211;(B).Cxxx1lnarctan2;(C).Cxxx1lnarctan2;(D).Cxxx1ln21arctan2答B9.设xdxxIcossin,则().(A).CxI2cos41;(B).CxI2cos41;(C).CxI2sin21;(D).CxI2cos21.答A10.设21xdxI,则I().(A).Cxarctan;(B)Cxx21ln;(C).Cx212;第三部分不定积分第4页共33页4(D).Cx)1ln(212.答B11.设211)(xxf,则的一个原函数)(xF()。(A).xx11ln21;(B).xarcsin;(C).xarctan;(D).xx11ln21.答A12.设)(xf为可导函数,则()。(A).)()(xfdxxf;(B).)()(xfdxxf;(C).)())((xfdxxf;(D)(Cxfdxxf)())((答C13.设xdxIarcsin,则().(A).Cx211;(B).Cxxx21arcsin2;(C).Cxxx21arcsin;(D).Cxxx211arcsin.答C第三部分不定积分第5页共33页514.xxdxsin2)2sin(()(A)cxx|2tan|ln412tan412(B)cxx|2tan|ln412tan812(C)cxx|2tan|ln812tan812(D)cxx|2tan|ln812tan412答(B)15.)4(xxdx()(A)cx2arcsin(B)cx22arcsin2(C)cx2arcsin2(D)cx22arcsin21答(C)16.dxxx21ln()(A)cxx2ln(B)cxxln(C)cxxln(D)cxx2ln答(B)刘坤17.设xxsin为)(xf的一个原函数,且0a,则dxaaxf)(=()(A)xaax3sin(B)xaax2sin(C)axaxsin(D)xaxsin答(A)刘坤18.哪个即)(xf(A)dxxfd)((B))(xdf(C))')')(((dxxf(D)dxxf)(答C第三部分不定积分第6页共33页619.欲使dxxfdxxf)()(,对常数有何限制?()(A)没有限制。(B)0。(C)0。(D)0。答B20.计算dxxxx22sincos2cos的最简单方法,是利用不定积分的:()(A)基本性质。(B)第一类换元积分法(凑微分法)。(C)第二类换元积分法。(D)分部积分法。答A21.设以下出现的表达式均有意义,则:()(A)dxxgdxxfdxxgxf)()())()(((B)dxxgdxxfdxxgxf)()()()((C)dxxgdxxfdxxgxf)()()()((D)dxxgdxxfdxxgxf)(/)()()(答A22.dxex()(A)2cex(B)2cex(C)cex(D)cex1答A23.当被积函数含有22ax时,可考虑令x()第三部分不定积分第7页共33页7(A)tasin(B)tatan(C)tasec(D)tacos答C24.若f(x)的导函数是Sinx,则f(x)有一个原函数为()(A).1Sinx(B).1Sinx(C)Cosx1(D).1Cosx答B25.积分dxxxcos等于()(A)cxsin(B)xcxsin(B)21xcxsin(D)2cxsin答D26.积分xdxcos1等于()(A)cx)cos1ln((B)cxxx)cos1ln(cos1(C)cxxcotcsc(D)cxxxcotcsc2答C27.积分dxex等于()(A)2cexx)1((B)cexx21第三部分不定积分第8页共33页8(C)cexx)1((D)cex答A28.积分dxxsin等于()(A)cxxx)cos(sin2(B)cxxx)cos(sin2(C)cxxx)cos(sin2(D)cxcos21答B29.积分dxxarctan等于()(A)cxxarctan)1((B)cxxarctan)1(2(C)cxxarctan)1((D)2cxxarctan)1(答C30.若cxdxxf2)(,则dxxxf)2(2等于()(A)2cx22)1((B)2cx22)2((C)cx22)2(21(D)cx22)1(21答C31.积分dxxx2|)|(等于()(A)cx334(B)cx3||34(C)cxx3|)|(31(D)cxxx|)|(322答D32.设xxf2cos)(sin',则)(xf等于()(A)cxx33(B)cxx33(C)cxx3cos3(D)cxx3sin3答A第三部分不定积分第9页共33页933.若)(xf的导函数是xsin,则)(xf有一个原函数为()。(A)xsin1(B)xsin1(C)xcos1(D)xcos1答B34.指出正确的积分公式()(A)cxarctgxdx211(B))1(111cxdxx(C)caxadxxadxarcsin122(D)cxxdxx11ln21112答B35.下列哪个表达式等于)(xf()(A)))((dxxfd(B))(xdf(C)))((dxxf(D)dxxf)(答C36.若dF(x)),()(则xfxF=()(A))(xF(B))(xf(C)cxf)((D)cxF)(第三部分不定积分第10页共33页10答D37.xxdx22cossin=()(A)cxxtancot(B)cxxcottan(C)cx2cot2(D)cx2tan2答A38.若,cos)(sin22xxf则)(xf()(A)cxx2sin21sin(B)cxx221(C)cxx221(D)cxxsincos答B39.已知)(xF是2sinx的一个原函数,则)(2xdF()(A)dxxx4sin2(B)dxx4sin(C)dxxx2sin2(D)22sindxx答A40.已知cedxxfx22)(,则)(xf()(A)221xe(B)221xe(C)2xe第三部分不定积分第11页共33页11(D)2xe答B41.已知,)1(2xxf则下列式子中正确的是()(A)cxxdxxf)1()(2(B)cxxfcxdxxxf32231)(,31)1((C)cxdxxxfxxf11)(,1)(22(D)cxdxxxf3)(22答C42.,)(22cexxfx则)(xf()(A)xxe22(B)xex222(C))2(2xxex(D))1(22xxex答D43.设,)(xexf则dxxxf)(ln=()(A)cx1(B)cx1(C)cxln(D)cxln答B44.,)(2cxdxxf则dxxxf)1(2()(A)cx22)1(2(B)cx22)1(2第三部分不定积分第12页共33页12(C)cx22)1(21(D)cx22)1(21答C45.下列等式中正确的是()(A)cxxdxx2sin212cos2sin2(B)cxdxxx2)(arcsin211arcsin(C)cxxdxxdxxxx22)(arcsin211arcsin2arcsin(D)cxfdxxxf)(21)(222答C46.设29xdxI,则I()(A)cxarcsin31(B)cx3arcsin(C)cx3arcsin31(D)cx3arcsin3答B47.设函数)ln(ax与)ln(bx),(ba则()(A))ln(ax的原函数是)ln(,1bxax的原函数是bx1(B))ln(ax与)ln(bx的原函数不相等(C))ln(ax与)ln(bx的原函数都是x1(D))ln(ax与)ln(bx的原函数相等,但不是x1答B第三部分不定积分第13页共33页1348.设,11dxeeIxx则I()(A)cex)1ln((B)cex)1ln((C)cexdxexx)1ln(2)121((D)cxedxeeexxxx)1ln(2112答D49.设,)2(sin3dxxI则I()(A)cxx)2(cos31)2cos(3(B)cxx)2(cos61)2cos(213(C)cxx)2(cos61)2cos(213(D)cxx)2(cos61213答C50.设,12xxdxI则I()(A)cxxxd11)1(21222(B)cxxxdx1arcsin)1(122(C)cxarcsin(D)cx1arcsin答D51.设dxxxItan1tan1,则I()(A)cxdxxxdxxxxxdxxxxx2sin1ln2sin12cos)sin(cossincossincossincos222第三部分不定积分第14页共33页14(B)dxxxxx222sincos)sin(coscxxxdxxx2cosln2tan2secln2cos2sin1(C)令,tantxcxxttdttdtI22seclntan1ln11(D)cxxxxxxdsincoslnsincos)sin(cos答D52.设,cos2sin22xxdxI则I()(A)cxxxd2arctan21tan2)(tan2(B)cxxdx)arctan(coscos12(C)xdx2sin2cxxsin2sin2ln221(D)
本文标题:不定积分习题
链接地址:https://www.777doc.com/doc-7294534 .html