您好,欢迎访问三七文档
当前位置:首页 > 办公文档 > 会议纪要 > 常微分方程试题库试卷库
常微分方程试题库试卷库常微分方程期终考试试卷(1)一、填空题(30%)1、方程(,)(,)0MxydxNxydy有只含x的积分因子的充要条件是()。有只含y的积分因子的充要条件是______________。2、_____________称为黎卡提方程,它有积分因子______________。3、__________________称为伯努利方程,它有积分因子_________。4、若12(),(),,()nXtXtXt为n阶齐线性方程的n个解,则它们线性无关的充要条件是__________________________。5、形如___________________的方程称为欧拉方程。6、若()t和()t都是'()xAtx的基解矩阵,则()t和()t具有的关系是_____________________________。7、当方程的特征根为两个共轭虚根是,则当其实部为_________时,零解是稳定的,对应的奇点称为___________。二、计算题(60%)1、3()0ydxxydy2、sincos2xxtt3、若2114A试求方程组xAx的解12(),(0)t并求expAt4、32()480dydyxyydxdx5、求方程2dyxydx经过(0,0)的第三次近似解三、证明题(10%)1、n阶齐线性方程一定存在n个线性无关解。试卷答案一填空题1、()MNyxxN()MNyxyM2、2()()()dypxyQxyRxdxyyz3、()()ndypxyQxydx(1)()(,)npxdxnuxyye4、12[(),(),,()]0nwxtxtxt5、11110nnnnnnndyddyxaaaydxdxdx6、()()ttC7、零稳定中心二计算题1、解:因为1,1MNyx,所以此方程不是恰当方程,方程有积分因子22ln21()dyyyyeey,两边同乘21y得320dxxydyyy所以解为321xxyydxdycyyy22xycy即22()xyyc另外y=0也是解2、线性方程0xx的特征方程210故特征根i1()sinftti是特征单根,原方程有特解(cossin)xtAtBt代入原方程A=-12B=02()cos2ftt2i不是特征根,原方程有特解cos2sin2xAtBt代入原方程13AB=0所以原方程的解为1211cossincoscos223xctctttt3、解:221()69014p解得1,23此时k=112n12v111123322120()()(3)()!ititittteAEeti由公式expAt=10()!intiiteAEi得33310111exp(3)01111tttttAteEtAEetett4、解:方程可化为3284dyydxxdyydx令dypdx则有3284pyxyp(*)(*)两边对y求导:322322(4)(8)4dpypypypypdy即32(4)(2)0dppyypdy由20dpypdy得12pcy即2()pyc将y代入(*)2224cpxc即方程的含参数形式的通解为:22224()cpxcpycp为参数又由3240py得123(4)py代入(*)得:3427yx也是方程的解5、解:00210022520041072511830002()4220()4400202204400160xxxyxyxdxxxxyxdxxxxxxxxyxdx三、证明题由解的存在唯一性定理知:n阶齐线性方程一定存在满足如下条件的n解:10200''1020011110200()1,()0,,()0()0,()1,,()0()0,()0,,()1nnnnnnxtxtxtxtxtxtxtxtxt考虑10200100010[(),(),,()]10001nwxtxtxt从而()(1,2,)ixtin是线性无关的。常微分方程期终试卷(2)一、填空题30%1、形如____________的方程,称为变量分离方程,这里.)().(yxf分别为x.y的连续函数。2、形如_____________的方程,称为伯努利方程,这里xxQxP为)().(的连续函数.n,可化为线性方程。是常数。引入变量变换1.03、如果存在常数使得不等式,0L_____________对于所有称为利普希兹常数。都成立,(LRyxyx),(),,21函数),(yxf称为在R上关于y满足利普希兹条件。4、形如_____________-的方程,称为欧拉方程,这里是常数。,,21aa5、设是的基解矩阵,是)()(tAxxt)()(tfxtAx的某一解,则它的任一解可表为)(t_____________-。二、计算题40%1、求方程的通解。26xyxydxdy2、求方程xyexydxdy的通解。3、求方程texxx25'6''的隐式解。4、求方程)的第三次近似解。、通过点(002yxdxdy三、证明题30%1.试验证t=122ttt是方程组x'=tt22102x,x=21xx,在任何不包含原点的区间abt上的基解矩阵。2.设t为方程x'=Ax(A为nn常数矩阵)的标准基解矩阵(即(0)=E),证明:t1(t0)=(t-t0)其中t0为某一值.《常微分方程》期终试卷答卷一、填空题(每空5分)1)()(yxfdxdy2、nyxQyxPdxdy)()(z=ny13),(),(21yxfyxf21yyL4、011111yadxdyxadxydxadxydxnnnnnnnn5、)()()(ttt二、计算题(每题10分)1、这是n=2时的伯努利不等式,令z=1y,算得dxdyydxdz2代入原方程得到xzxdxdz6,这是线性方程,求得它的通解为z=826xxc带回原来的变量y,得到y1=826xxc或者cxyx886,这就是原方程的解。此外方程还有解y=0.2、解:xyxexyedxdyxyxydxyxexdyxy)(dxxeydxxdyxydxxedxyxyxdxedxyxy积分:cxexy221故通解为:0212cexxy3、解:齐线性方程05'6''xxx的特征方程为0562,5,121,故通解为ttecectx521)(2不是特征根,所以方程有形如tAetx2)(把)(tx代回原方程tttteAeAeAe22225124211A于是原方程通解为ttteecectx2521211)(4、解0)(0xxxdxxxx022012)]([)(202)]([)(502212xxdxxxxx4400160202)]([)(118502223xxxxdxxxxx三、证明题(每题15分)1、证明:令t的第一列为1(t)=tt22,这时'1(t)=22t=tt221021(t)故1(t)是一个解。同样如果以2(t)表示t第二列,我们有2(t)=01=tt221022(t)这样2(t)也是一个解。因此t是解矩阵。又因为dett=-t2故t是基解矩阵。2、证明:(1)t,(t-t0)是基解矩阵。(2)由于t为方程x'=Ax的解矩阵,所以t1(t0)也是x'=Ax的解矩阵,而当t=t0时,(t0)1(t0)=E,(t-t0)=(0)=E.故由解的存在唯一性定理,得t1(t0)=(t-t0)3、设)(t为方程Axx(A为nn常数矩阵)的标准基解矩阵(即))0(E,证明)(t)()(001ttt其中0t为某一值。3、证明:)(t为方程Axx的基解矩阵)(01t为一非奇异常数矩阵,所以)(t)(01t也是方程Axx的基解矩阵,且)(0tt也是方程Axx的基解矩阵,且都满足初始条件)(t)(01tE,Ett)0()(00所以)(t)()(001ttt常微分方程期终考试试卷(5)一.填空题(30分)1.)()(xQyxPdxdy称为一阶线性方程,它有积分因子dxxPe)(,其通解为_________。2.函数),(yxf称为在矩形域R上关于y满足利普希兹条件,如果_______。3.若)(x为毕卡逼近序列)(xn的极限,则有)()(xxn______。4.方程22yxdxdy定义在矩形域22,22:yxR上,则经过点(0,0)的解的存在区间是_______。5.函数组ttteee2,,的伏朗斯基行列式为_______。6.若),,2,1)((nitxi为齐线性方程的一个基本解组,)(tx为非齐线性方程的一个特解,则非齐线性方程的所有解可表为________。7.若)(t是xtAx)('的基解矩阵,则向量函数)(t=_______是)()('tfxtAx的满足初始条件0)(0t的解;向量函数)(t=_____是)()('tfxtAx的满足初始条件)(0t的解。8.若矩阵A具有n个线性无关的特征向量nvvv,,,21,它们对应的特征值分别为n,,21,那么矩阵)(t=______是常系数线性方程组Axx'的一个基解矩阵。9.满足_______的点),(**yx,称为驻定方程组。二.计算题(60分)10.求方程0)1(24322dyyxdxyx的通解。11.求方程0xedxdydxdy的通解。12.求初值问题0)1(22yyxdxdy1,11:yxR的解的存在区间,并求第二次近似解,给出在解的存在区间的误差估计。13.求方程ttxx3sin9''的通解。14.试求方程组)('tfAxx的解).(t1)(,3421,11)0(tetfA三.证明题(10分)16.如果)(t是Axx'满足初始条件)(0t的解,那么)(exp)(0ttAt常微分方程期终考试试卷答案一.填空题(30分)1.))(()()(cdxexQeydxxPdxxP2.),(yxf在R上连续,存在0L,使2121),(),(yyLyxfyxf,对于任意Ryxyx),(),,(213.1)!1(nnhnML4.4141x5.ttttttttteeeeeeeee222426.)()()(1txtxctxinii7.dssfsttt)()()(10dssfsttttt)()()()()(01018.ntttveveven,,,21219.0),(,0),(yxYyxX二.计算题(60分)10.解:yxxNyxyM226,8yMxNyM21积分因子2121)(
本文标题:常微分方程试题库试卷库
链接地址:https://www.777doc.com/doc-7303252 .html