您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 人教版九年级数学上册期末考试卷及答案【精】
九年级(上)期末数学试卷一、选择题(本大题共10小题,每小题3分,共30分)1.下列方程中,关于x的一元二次方程是()A.x2+x+y=0B.x2﹣3x+1=0C.(x+3)2=x2+2xD.2.如图,⊙O是△ABC的外接圆,若∠AOB=100°,则∠ACB的度数是()A.40°B.50°C.60°D.80°3.下列图形中,是中心对称但不是轴对称图形的为()A.B.C.D.4.某机械厂七月份的营业额为100万元,已知第三季度的总营业额共331万元.如果平均每月增长率为x,则由题意列方程应为()A.100(1+x)2=331B.100+100×2x=331C.100+100×3x=331D.100[1+(1+x)+(1+x)2]=3315.下列函数中,当x>0时,y随x的增大而减小的是()A.y=x+1B.y=x2﹣1C.D.y=﹣(x﹣1)2+16.若⊙P的半径为13,圆心P的坐标为(5,12),则平面直角坐标系的原点O与⊙P的位置关系是()A.在⊙P内B.在⊙P上C.在⊙P外D.无法确定7.若△ABC∽△DEF,△ABC与△DEF的相似比为1:2,则△ABC与△DEF的周长比为()A.1:4B.1:2C.2:1D.1:8.若函数y=mx2+(m+2)x+m+1的图象与x轴只有一个交点,那么m的值为()A.0B.0或2C.2或﹣2D.0,2或﹣29.已知正六边形的边长为10cm,则它的边心距为()A.cmB.5cmC.5cmD.10cm10.如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(﹣3,0),对称轴为直线x=﹣1,给出四个结论:①b2>4ac;②2a+b=0;③a+b+c>0;④若点B(﹣,y1)、C(﹣,y2)为函数图象上的两点,则y1<y2,其中正确结论是()A.②④B.①④C.①③D.②③二、填空题(本大题共8小题,每小题4分,共32分)11.从长度分别为2,4,6,7的四条线段中随机取三条,能构成三角形的概率是.12.若|b﹣1|+=0,且一元二次方程kx2+ax+b=0有两个实数根,则k的取值范围是.13.⊙O的半径为13cm,AB,CD是⊙O的两条弦,AB∥CD,AB=24cm,CD=10cm.则AB和CD之间的距离.14.将抛物线:y=x2﹣2x向上平移3个单位,再向右平移4个单位得到的抛物线是.15.已知正比例函数y=﹣2x与反比例函数y=的图象的一个交点坐标为(﹣1,2),则另一个交点的坐标为.16.如图表示一圆柱形输水管的横截面,阴影部分为有水部分,如果输水管的半径为5m,水面宽AB为8m,则水的最大深度CD为m.17.如图:点A在双曲线上,AB丄x轴于B,且△AOB的面积S△AOB=2,则k=.18.如图,已知Rt△ABC是⊙O的内接三角形,其中直角边AC=6、BC=8,则⊙O的半径是.三、解答题(本大题共5小题,共38分)19.解方程:(1)x2+4x+1=0(用配方法);(2)x(x﹣2)+x﹣2=0.20.如图,△ABC是等边三角形,P为△ABC内部一点,将△ABP绕点A逆时针旋转后能与△ACP′重合,如果AP=3,求PP′的长.21.已知:△ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度).(1)画出△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是;(2)以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,点C2的坐标是;(3)△A2B2C2的面积是平方单位.22.某水果批发商场经销一种水果,如果每千克盈利10元,每天可售出400千克.经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克.(1)当每千克涨价为多少元时,每天的盈利最多?最多是多少?(2)若商场只要求保证每天的盈利为4420元,同时又可使顾客得到实惠,每千克应涨价为多少元?23.如图,已知AB是⊙O的直径,点C,D在⊙O上,点E在⊙O外,∠EAC=∠B.(1)求证:直线AE是⊙O的切线;(2)若∠D=60°,AB=6时,求劣弧的长(结果保留π).四、解答题(本大题共5小题,共50分)24.如图,有甲、乙两个转盘,每个转盘上各个扇形的圆心角都相等,让两个转盘分别自由转动一次,当转盘指针落在分界线上时,重新转动.(1)请你画树状图或列表表示所有等可能的结果.(2)求两个指针落在区域的颜色能配成绿色的概率.(黄、蓝两色混合配成绿色)25.如图,已知反比例函数y=与一次函数y=x+b的图象在第一象限相交于点A(1,﹣k+4)(1)试确定这两个函数的表达式;(2)求出这两个函数图象的另一个交点B的坐标,并根据图象写出使一次函数的值小于反比例函数值的x的取值范围.26.如图,▱ABCD中,E是CD的延长线上一点,BE与AD交于点F,DE=CD.(1)求证:△ABF∽△CEB;(2)若△DEF的面积为2,求▱ABCD的面积.27.如图,在△ABC中,AB=AC,∠BAC=54°,以AB为直径的⊙O分别交AC,BC于点D,E,过点B作⊙O的切线,交AC的延长线于点F.(1)求证:BE=CE;(2)求∠CBF的度数;(3)若AB=6,求的长.28.如图,抛物线y=﹣x2+bx+c与x轴交于A(1,0),B(﹣3,0)两点.(1)求该抛物线的解析式;(2)设(1)中的抛物线交y轴与C点,在该抛物线的对称轴上是否存在点Q,使得△QAC的周长最小?若存在,求出Q点的坐标;若不存在,请说明理由;(3)在(1)中的抛物线上的第二象限上是否存在一点P,使△PBC的面积最大?若存在,求出点P的坐标及△PBC的面积最大值;若没有,请说明理由.参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分)1.下列方程中,关于x的一元二次方程是()A.x2+x+y=0B.x2﹣3x+1=0C.(x+3)2=x2+2xD.【考点】一元二次方程的定义.【分析】一元二次方程必须满足四个条件:(1)未知数的最高次数是2;(2)二次项系数不为0;(3)是整式方程;(4)含有一个未知数.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.【解答】解:A、方程含有两个未知数,故错误;B、符合一元二次方程的定义,正确;C、整理后方程二次项系数为0,故错误;D、不是整式方程,故错误.故选B.【点评】此题主要考查了一元二次方程的定义,判断一个方程是否是一元二次方程应注意抓住5个方面:“化简后”;“一个未知数”;“未知数的最高次数是2”;“二次项的系数不等于0”;“整式方程”.2.如图,⊙O是△ABC的外接圆,若∠AOB=100°,则∠ACB的度数是()A.40°B.50°C.60°D.80°【考点】圆周角定理.【分析】已知⊙O是△ABC的外接圆,∠AOB=100°,根据圆周角定理可求得∠ACB的度数.【解答】解:∵⊙O是△ABC的外接圆,∠AOB=100°,∴∠ACB=∠AOB=×100°=50°.故选B.【点评】本题主要考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角是所对的圆心角的一半.3.下列图形中,是中心对称但不是轴对称图形的为()A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形及中心对称图形的定义,结合所给图形进行判断即可.【解答】解:A、既不是轴对称图形,也不是中心对称图形,故本选项错误;B、是轴对称图形,也是中心对称图形,故本选项错误;C、不是轴对称图形,是中心对称图形,故本选项正确;D、是轴对称图形,不是中心对称图形,故本选项错误;故选C.【点评】本题主要考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180度后与原图形重合,难度适中.4.某机械厂七月份的营业额为100万元,已知第三季度的总营业额共331万元.如果平均每月增长率为x,则由题意列方程应为()A.100(1+x)2=331B.100+100×2x=331C.100+100×3x=331D.100[1+(1+x)+(1+x)2]=331【考点】由实际问题抽象出一元二次方程.【专题】增长率问题.【分析】根据增长率问题,一般增长后的量=增长前的量×(1+增长率),关系式为:七月份月营业额+八月份月营业额+九月份月营业额=331,把相关数值代入即可求解.【解答】解:设平均每月的增长率为x,根据题意:八月份的月营业额为100×(1+x),九月份的月销售额在八月份月销售额的基础上增加x,为100×(1+x)×(1+x),则列出的方程是:100+100(1+x)+100(1+x)2=331,100[1+(1+x)+(1+x)2]=331.故选D.【点评】此题主要考查了求平均变化率的方法.若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.5.下列函数中,当x>0时,y随x的增大而减小的是()A.y=x+1B.y=x2﹣1C.D.y=﹣(x﹣1)2+1【考点】二次函数的性质;一次函数的性质;反比例函数的性质.【分析】反比例函数、二次函数的增减性都有限制条件(即范围),一次函数当一次项系数为负数时,y随着x增大而减小.【解答】解:A、函数y=2x+1的图象是y随着x增大而增大,故本选项错误;B、函数y=x2﹣1,当x<0时,y随着x增大而减小,当x>0时,y随着x增大而增大,故本选项错误;C、函数y=,当x<0或x>0时,y随着x增大而减小,故本选项正确;D、函数y=﹣(x﹣1)2+1,当x<1时,y随着x增大而增大,当x>1时,y随着x增大而减小,故本选项错误;故选C.【点评】本题考查了二次函数、一次函数、反比例函数的增减性.关键是明确各函数的增减性的限制条件.6.若⊙P的半径为13,圆心P的坐标为(5,12),则平面直角坐标系的原点O与⊙P的位置关系是()A.在⊙P内B.在⊙P上C.在⊙P外D.无法确定【考点】点与圆的位置关系;坐标与图形性质.【专题】计算题.【分析】根据P点坐标和勾股定理可计算出OP的长,然后根据点与圆的位置关系的判定方法判断它们的关系.【解答】解:∵圆心P的坐标为(5,12),∴OP==13,∴OP=r,∴原点O在⊙P上.故选B.【点评】本题考查了点与圆的位置关系:.设⊙O的半径为r,点P到圆心的距离OP=d,则有:点P在圆外⇔d>r;点P在圆上⇔d=r;点P在圆内⇔d<r.7.若△ABC∽△DEF,△ABC与△DEF的相似比为1:2,则△ABC与△DEF的周长比为()A.1:4B.1:2C.2:1D.1:【考点】相似三角形的性质.【专题】压轴题.【分析】本题可根据相似三角形的性质求解:相似三角形的周长比等于相似比.【解答】解:∵△ABC∽△DEF,且相似比为1:2,∴△ABC与△DEF的周长比为1:2.故选B.【点评】本题主要考查了相似三角形的性质:相似三角形的周长比等于相似比.8.若函数y=mx2+(m+2)x+m+1的图象与x轴只有一个交点,那么m的值为()A.0B.0或2C.2或﹣2D.0,2或﹣2【考点】抛物线与x轴的交点.【专题】分类讨论.【分析】分为两种情况:函数是二次函数,函数是一次函数,求出即可.【解答】解:分为两种情况:①当函数是二次函数时,∵函数y=mx2+(m+2)x+m+1的图象与x轴只有一个交点,∴△=(m+2)2﹣4m(m+1)=0且m≠0,解得:m=±2,②当函数是一次函数时,m=0,此时函数解析式是y=2x+1,和x轴只有一个交点,故选:D.【点评】本题考查了抛物线与x轴的交点,根的判别式的应用,用了分类讨论思想,题目比较好,但是也比较容易出错.9.已知正六边形的边长为10cm,则它的边心距为()A.cmB.5cmC.5cmD.10cm【考点】正多边形和圆.【分析】已知正六边形的边长为10cm,欲求边心距,可通过边心距、边长的一半和内接圆半径构造直角三角形,通过解直角三角形得出.【解答】
本文标题:人教版九年级数学上册期末考试卷及答案【精】
链接地址:https://www.777doc.com/doc-7303940 .html