您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 项目/工程管理 > 搞定空间几何体的外接球与内切球教师版
1八个有趣模型——搞定空间几何体的外接球与内切球.一、有关定义1.球的定义:空间中到定点的距离等于定长的点的集合(轨迹)叫球面,简称球.2.外接球的定义:若一个多面体的各个顶点都在一个球的球面上,则称这个多面体是这个球的内接多面体,这个球是这个多面体的外接球.3.内切球的定义:若一个多面体的各面都与一个球的球面相切,则称这个多面体是这个球的外切多面体,这个球是这个多面体的内切球.二、外接球的有关知识与方法1.性质:性质1:过球心的平面截球面所得圆是大圆,大圆的半径与球的半径相等;性质2:经过小圆的直径与小圆面垂直的平面必过球心,该平面截球所得圆是大圆;性质3:过球心与小圆圆心的直线垂直于小圆所在的平面(类比:圆的垂径定理);性质4:球心在大圆面和小圆面上的射影是相应圆的圆心;性质5:在同一球中,过两相交圆的圆心垂直于相应的圆面的直线相交,交点是球心(类比:在同圆中,两相交弦的中垂线交点是圆心).cab初图2初图1NOO1PEFOO1D1C1B1DCA1O2ABM2.结论:结论1:长方体的外接球的球心在体对角线的交点处,即长方体的体对角线的中点是球心;结论2:若由长方体切得的多面体的所有顶点是原长方体的顶点,则所得多面体与原长方体的外接球相同;2结论3:长方体的外接球直径就是面对角线及与此面垂直的棱构成的直角三角形的外接圆圆心,换言之,就是:底面的一条对角线与一条高(棱)构成的直角三角形的外接圆是大圆;结论4:圆柱体的外接球球心在上下两底面圆的圆心连一段中点处;结论5:圆柱体轴截面矩形的外接圆是大圆,该矩形的对角线(外接圆直径)是球的直径;结论6:直棱柱的外接球与该棱柱外接圆柱体有相同的外接球;结论7:圆锥体的外接球球心在圆锥的高所在的直线上;结论8:圆锥体轴截面等腰三角形的外接圆是大圆,该三角形的外接圆直径是球的直径;结论9:侧棱相等的棱锥的外接球与该棱锥外接圆锥有相同的外接球.3.终极利器:勾股定理、正弦定理及余弦定理(解三角形求线段长度);三、内切球的有关知识与方法1.若球与平面相切,则切点与球心连线与切面垂直.(与直线切圆的结论有一致性).2.内切球球心到多面体各面的距离均相等,外接球球心到多面体各顶点的距离均相等.(类比:与多边形的内切圆).3.正多面体的内切球和外接球的球心重合.4.正棱锥的内切球和外接球球心都在高线上,但不一定重合.5.基本方法:(1)构造三角形利用相似比和勾股定理;(2)体积分割是求内切球半径的通用做法(等体积法).四、与台体相关的,此略.五、八大模型第一讲柱体背景的模型类型一、墙角模型(三条棱两两垂直,不找球心的位置即可求出球半径)3cab图1-1CPABabc图1-2PCBAabc图1-3CBPAabc图1-4PCBA方法:找三条两两垂直的线段,直接用公式2222)2(cbaR,即2222cbaR,求出R例1(1)已知各顶点都在同一球面上的正四棱柱的高为4,体积为16,则这个球的表面积是(C)A.16B.20C.24D.32解:162haV,2a,24164442222haaR,24S,选C;(2)若三棱锥的三个侧面两两垂直,且侧棱长均为3,则其外接球的表面积是9解:933342R,942RS;(3)在正三棱锥SABC中,MN、分别是棱SCBC、的中点,且MNAM,若侧棱23SA,则正三棱锥ABCS外接球的表面积是.36解:引理:正三棱锥的对棱互相垂直.证明如下:如图(3)-1,取BCAB,的中点ED,,连接CDAE,,CDAE,交于H,连接SH,则H是底面正三角形ABC的中心,SH平面ABC,ABSH,BCAC,BDAD,ABCD,AB平面SCD,SCAB,同理:SABC,SBAC,即正三棱锥的对棱互垂直,本题图如图(3)-2,MNAM,MNSB//,SBAM,SBAC,SB平面SAC,SASB,SCSB,SASB,SABC,SA平面SBC,SCSA,故三棱锥ABCS的三棱条侧棱两两互相垂直,(3)题-1(引理)HEDBACS(3)题-2(解答图)MNABCS436)32()32()32()2(2222R,即3642R,正三棱锥ABCS外接球的表面积是36.(4)在四面体SABC中,ABCSA平面,,1,2,120ABACSABAC则该四面体的外接球的表面积为(D)11.A7.B310.C340.D解:在ABC中,7120cos2222BCABABACBC,7BC,ABC的外接球直径为372237sin2BACBCr,3404)372()2()2(2222SArR,340S,选D(5)如果三棱锥的三个侧面两两垂直,它们的面积分别为6、4、3,那么它的外接球的表面积是解:由已知得三条侧棱两两垂直,设三条侧棱长分别为cba,,(Rcba,,),则6812acbcab,24abc,3a,4b,2c,29)2(2222cbaR,2942RS,(6)已知某几何体的三视图如图所示,三视图是腰长为1的等腰直角三角形和边长为1的正方形,则该几何体外接球的体积为解:3)2(2222cbaR,432R,23R2383334343RV球,类型二、对棱相等模型(补形为长方体)(6)题图(6)题直观图CAPB5题设:三棱锥(即四面体)中,已知三组对棱分别相等,求外接球半径(CDAB,BCAD,BDAC)第一步:画出一个长方体,标出三组互为异面直线的对棱;第二步:设出长方体的长宽高分别为cba,,,xBCAD,yCDAB,zBDAC,列方程组,222222222zacycbxba2)2(2222222zyxcbaR,补充:图2-1中,abcabcabcVBCDA31461.第三步:根据墙角模型,22222222zyxcbaR,82222zyxR,8222zyxR,求出R.思考:如何求棱长为a的正四面体体积,如何求其外接球体积?例2(1)如下图所示三棱锥ABCD,其中5,6,7,ABCDACBDADBC则该三棱锥外接球的表面积为.解:对棱相等,补形为长方体,如图2-1,设长宽高分别为cba,,,110493625)(2222cba,55222cba,5542R,55S(1)题图BCDA(2)在三棱锥BCDA中,2CDAB,3BCAD,4BDAC,则三棱锥BCDA外接球的表面积为.229yxabczzyx图2-1DCAB6解:如图2-1,设补形为长方体,三个长度为三对面的对角线长,设长宽高分别为cba,,,则922ba,422cb,1622ac291649)(2222cba,291649)(2222cba,229222cba,22942R,229S(3)正四面体的各条棱长都为2,则该正面体外接球的体积为(3)解答题CPAB解:正四面体对棱相等的模式,放入正方体中,32R,23R,2383334V(4)棱长为2的正四面体的四个顶点都在同一个球面上,若过该球球心的一个截面如下图,则图中三角形(正四面体的截面)的面积是.(4)题解答图(4)题CPBO1OO2A解:如解答图,将正四面体放入正方体中,截面为1PCO,面积是2.类型三、汉堡模型(直棱柱的外接球、圆柱的外接球)7图3-1C1B1AEFA1O1OO2BC图3-2C1B1AA1O1OO2BC图3-3C1B1AEFA1O1OO2BC题设:如图3-1,图3-2,图3-3,直三棱柱内接于球(同时直棱柱也内接于圆柱,棱柱的上下底面可以是任意三角形)第一步:确定球心O的位置,1O是ABC的外心,则1OO平面ABC;第二步:算出小圆1O的半径rAO1,hAAOO212111(hAA1也是圆柱的高);第三步:勾股定理:21212OOAOOA222)2(rhR22)2(hrR,解出R例3(1)一个正六棱柱的底面上正六边形,其侧棱垂直于底面,已知该六棱柱的顶点都在同一个球面上,且该六棱柱的体积为89,底面周长为3,则这个球的体积为解:设正六边形边长为a,正六棱柱的高为h,底面外接圆的半径为r,则21a,正六棱柱的底面积为833)21(4362S,89833hShV柱,3h,4)3(14222R也可1)21()23(222R),1R,球的体积为34球V;(2)直三棱柱111ABCABC的各顶点都在同一球面上,若12ABACAA,120BAC,则此球的表面积等于.解:32BC,4120sin322r,2r,5R,20S;(3)已知EAB所在的平面与矩形ABCD所在的平面互相垂直,60,2,3AEBADEBEA,则多面体ABCDE的外接球的表面积为.16解:折叠型,r1Rr2r1R(3)题OO2MDBACEO18法一:EAB的外接圆半径为31r,11OO,231R;法二:231MO,21322DOr,4413432R,2R,16表S;法三:补形为直三棱柱,可改变直三棱柱的放置方式为立式,算法可同上,略.换一种方式,通过算圆柱的轴截面的对角线长来求球的直径:162)32()2(222R,16表S;(4)在直三棱柱111CBAABC中,4,3,6,41AAAACAB,则直三棱柱111CBAABC的外接球的表面积为.3160解:法一:282164236162BC,72BC,37423722r,372r,3404328)2(2122AArR,3160表S;法二:求圆柱的轴截面的对角线长得球直径,此略.第二讲锥体背景的模型类型四、切瓜模型(两个大小圆面互相垂直且交于小圆直径——正弦定理求大圆直径是通法)图4-1PAO1OCB图4-2AO1OCBP图4-3OO1ACBP图4-4ACBP1.如图4-1,平面PAC平面ABC,且BCAB(即AC为小圆的直径),且P的射影是ABC的外心三棱锥ABCP的三条侧棱相等三棱ABCP的底面ABC在圆锥的底上,顶点P点也是圆锥的顶点.解题步骤:第一步:确定球心O的位置,取ABC的外心1O,则1,,OOP三点共线;第二步:先算出小圆1O的半径rAO1,再算出棱锥的高hPO1(也是圆锥的高);9第三步:勾股定理:21212OOAOOA222)(rRhR,解出R;事实上,ACP的外接圆就是大圆,直接用正弦定理也可求解出R.2.如图4-2,平面PAC平面ABC,且BCAB(即AC为小圆的直径),且ACPA,则利用勾股定理求三棱锥的外接球半径:①222)2()2(rPAR22)2(2rPAR;②2122OOrR212OOrR3.如图4-3,平面PAC平面ABC,且BCAB(即AC为小圆的直径)21212OOCOOC2122OOrR2122OORAC4.题设:如图4-4,平面PAC平面ABC,且BCAB(即AC为小圆的直径)第一步:易知球心O必是PAC的外心,即PAC的外接圆是大圆,先求出小圆的直径rAC2;第二步:在PAC中,可根据正弦定理RCcBbAa2sinsinsin,求出R.例4(1)正四棱锥的顶点都在同一球面上,若该棱锥的高为1,底面边长为32,则该球的表面积为.解:法一:由正弦定理(用大圆求外接球直径);法二:找球心联合勾股定理,72R,4942RS;(2)正四棱锥ABCDS的底面边长和各侧棱长都为2,各顶点都在同一球面上,则此球体积为解:方法
本文标题:搞定空间几何体的外接球与内切球教师版
链接地址:https://www.777doc.com/doc-7320643 .html