您好,欢迎访问三七文档
当前位置:首页 > 临时分类 > 离散数学在人工智能方面的应用
离散数学在人工智能方面的应用摘要:离散数学,又称为组合数学。离散数学是计算机出现以后迅速发展起来的一门数学分支。计算机科学就是算法的科学,而计算机所处理的对象是离散的数据,所以离散对象的处理就成了计算机科学的核心,而研究离散对象的科学恰恰就是离散数学。离散数学的发展改变了传统数学中分析和代数占统治地位的局面。它在各学科领域,特别在计算机科学与技术领域有着广泛的应用,同时离散数学也是计算机专业的许多专业课程,如程序设计语言、数据结构、操作系统、编译技术、人工智能、数据库、算法设计与分析、理论计算机科学基础等必不可少的先行课程。人工智能是研究出具有智能行为的计算机系统,这种智能主要体现在计算机的推理能力上,而推理理论主要来自与离散数学。关键词:离散数学人工智能数理逻辑应用离散数学是现代数学的一个重要分支,是计算机类专业的重要课程。它以研究离散量的结构及其相互间的关系为主要目标,其研究对象一般是有限个或可数个元素,因此离散数学可以充分描述计算机学科离散性的特点。由于离散数学在计算机科学中的重要作用,国内外几乎所有大学的计算机类专业的教学计划中都将其列为核心课程进行重点建设,它是其他骨干课程,如数据结构、操作系统、人工智能、计算机网络、软件工程、编译原理等的先修课程,国内许多大学将其作为计算机专业类研究生入学考试的内容。20世纪的计算机出现,带动了世界性的信息革命的伟大进程。计算机科学在信息革命中的学科地位有如牛顿力学在工业革命中的学科地位一样,由计算机出现带动的信息革命当然计算机科学将起着主导的作用。随着信息时代的到来,工业革命时代以微积分为代表的连续数学占主流的地位已经发生了变化,离散数学的重要性逐渐被人们认识。离散数学课程所传授的思想和方法,广泛地体现在计算机科学技术及相关专业的诸领域,从科学计算到信息处理,从理论计算机科学到计算机应用技术,从计算机软件到计算机硬件,从人工智能到认知系统,无不与离散数学密切相关。离散数学是传统的逻辑学,集合论(包括函数),数论基础,算法设计,组合分析,离散概率,关系理论,图论与树,抽象代数(包括代数系统,群、环、域等),布尔代数,计算模型(语言与自动机)等汇集起来的一门综合学科。离散数学课程主要介绍离散数学的各个分支的基本概念、基本理论和基本方法。这些概念、理论以及方法大量地应用在数字电路、编译原理、数据结构、操作系统、数据库系统、算法的分析与设计、人工智能、计算机网络等专业课程中;同时,该课程所提供的训练十分有益于学生概括抽象能力、逻辑思维能力、归纳构造能力的提高,十分有益于学生严谨、完整、规范的科学态度的培养。人工智能是计算机学科中一个非常重要的方向,离散数学在人工智能中的应用主要是数理逻辑部分在人工智能中的应用。数理逻辑又称符号逻辑、理论逻辑。它既是数学的一个分支,也是逻辑学的一个分支。是用数学方法研究逻辑或形式逻辑的学科。其研究对象是对证明和计算这两个直观概念进行符号化以后的形式系统。数理逻辑是数学基础的一个不可缺少的组成部分。虽然名称中有逻辑两字,但并不属于单纯逻辑学范畴。数理逻辑在离散数学中包括命题逻辑和谓词逻辑,命题逻辑就是研究以命题为单位进行前提与结论之间的推理,谓词逻辑在命题逻辑的基础上更加细化了,谓词逻辑主要就是研究句子内在的联系。大家都知道,人工智能共有两个流派,连接主义流派和符号主义流派。其中在符号主义流派里,他们认为现实世界的各种事物可以用符号的形式表示出来,其中最主要的就是人类的自然语言可以用符号进行表示。语言的符号化就是数理逻辑研究的基本内容,计算机智能化的前提就是将人类的语言符号化成机器可以识别的符号,这样计算机才能进行推理,才能具有智能。再比如在人工智能研究领域,定理机器证明与自动推理、专家系统、自然语言的理解、感知系统,由此可见数理中重要的思想、方法及内容贯穿到人工智能的整个学科。总之,离散数学无处不在,它的主要应用就是在各种复杂关系中找出最优的方案。所以离散数学完全可以看成是一门量化的关系学,一门量化了的运筹学,一门量化了的管理学。现在我国每一所大学的计算机专业都开设离散数学课程,正因为离散数学在计算机科学中的重要应用,可以说没有离散数学就没有计算机理论,也就没有计算机科学。所以,应努力学习离散数学,推动离散数学的研究,使它在计算机中有着更为广泛的应用。
本文标题:离散数学在人工智能方面的应用
链接地址:https://www.777doc.com/doc-7332246 .html