您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 项目/工程管理 > 华师大版初中数学九年级下册《圆的对称性》课件
圆的对称性●O③AM=BM,AB是⊙O的一条弦.你能发现图中有哪些等量关系?与同伴说说你的想法和理由.驶向胜利的彼岸作直径CD,使CD⊥AB,垂足为M.●O右图是轴对称图形吗?如果是,其对称轴是什么?我们发现图中有:ABCDM└由①CD是直径②CD⊥AB可推得⌒⌒④AC=BC,⌒⌒⑤AD=BD.设疑自探垂径定理定理垂直于弦的直径平分弦,并且平分弦所的两条弧.提示:垂径定理是圆中一个重要的结论,三种语言要相互转化,形成整体,才能运用自如.驶向胜利的彼岸●OABCDM└CD⊥AB,如图∵CD是直径,∴AM=BM,⌒⌒AC=BC,⌒⌒AD=BD.②CD⊥AB,垂径定理的逆定理:AB是⊙O的一条弦,且AM=BM.你能发现图中有哪些等量关系?与同伴说说你的想法和理由.过点M作直径CD.●O右图是轴对称图形吗?如果是,其对称轴是什么?我们发现图中有:CD由①CD是直径③AM=BM可推得⌒⌒④AC=BC,⌒⌒⑤AD=BD.●MAB┗平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.你可以写出相应的结论吗?垂径定理的逆定理如图,在下列五个条件中:只要具备其中两个条件,就可推出其余三个结论.驶向胜利的彼岸●OABCDM└①CD是直径,③AM=BM,②CD⊥AB,⌒⌒④AC=BC,⌒⌒⑤AD=BD.驶向胜利的彼岸挑战自我画一画如图,M为⊙O内的一点,利用尺规作一条弦AB,使AB过点M.并且AM=BM.●O●M驶向胜利的彼岸挑战自我填一填1、判断:⑴垂直于弦的直线平分这条弦,并且平分弦所对的两条弧.()⑵平分弦所对的一条弧的直径一定平分这条弦所对的另一条弧.()⑶经过弦的中点的直径一定垂直于弦.()⑷圆的两条弦所夹的弧相等,则这两条弦平行.()⑸弦的垂直平分线一定平分这条弦所对的弧.()垂径定理的应用例1如图,一条公路的转变处是一段圆弧(即图中弧CD,点O是弧CD的圆心),其中CD=600m,E为弧CD上的一点,且OE⊥CD垂足为F,EF=90m.求这段弯路的半径.驶向胜利的彼岸解:连接OC.●OCDEF.)90(,mROFRm则设弯路的半径为,CDOE).(3006002121mCDCF得根据勾股定理,即,222OFCFOC.90300222RR.545,R得解这个方程.545m这段弯路的半径约为老师提示:注意闪烁的三角形的特点.赵州石拱桥1.1300多年前,我国隋朝建造的赵州石拱桥(如图)的桥拱是圆弧形,它的跨度(弧所对是弦的长)为37.4m,拱高(弧的中点到弦的距离,也叫弓形高)为7.2m,求桥拱的半径(精确到0.1m).驶向胜利的彼岸赵州石拱桥驶向胜利的彼岸解:如图,用表示桥拱,所在圆的圆心为O,半径为Rm,经过圆心O作弦AB的垂线OD,D为垂足,与相交于点C.根据垂径定理,D是AB的中点,C是的中点,CD就是拱高.由题设ABABABAB,2.7,4.37CDABABAD21,7.184.3721DCOCOD.2.7R在Rt△OAD中,由勾股定理,得,222ODADOA.)2.7(7.18222RR即解得R≈27.9(m).答:赵州石拱桥的桥拱半径约为27.9m.OABCRD37.47.2垂径定理的应用在直径为650mm的圆柱形油槽内装入一些油后,截面如图所示.若油面宽AB=600mm,求油的最大深度.驶向胜利的彼岸BAOED┌600BAO600ø650DC质疑再探学了本节知识,你还有什么疑问吗?船能过拱桥吗如图,某地有一圆弧形拱桥,桥下水面宽为7.2米,拱顶高出水面2.4米.现有一艘宽3米、船舱顶部为长方形并高出水面2米的货船要经过这里,此货船能顺利通过这座拱桥吗?相信自己能独立完成解答.驶向胜利的彼岸船能过拱桥吗解:如图,用表示桥拱,所在圆的圆心为O,半径为Rm,经过圆心O作弦AB的垂线OD,D为垂足,与相交于点C.根据垂径定理,D是AB的中点,C是的中点,CD就是拱高.由题设得驶向胜利的彼岸ABABABAB.5.121,4.2,2.7MNHNCDABABAD21,6.32.721DCOCOD.4.2R在Rt△OAD中,由勾股定理,得,222ODADOA.)4.2(6.3222RR即解得R≈3.9(m).在Rt△ONH中,由勾股定理,得,22HNONOH.6.35.19.322OH即.21.25.16.3DH∴此货船能顺利通过这座拱桥.
本文标题:华师大版初中数学九年级下册《圆的对称性》课件
链接地址:https://www.777doc.com/doc-7346966 .html