您好,欢迎访问三七文档
0第0页电机学课程设计总结报告课题名称:BK-250变压器设计专业:电气工程及其自动化班级:11电气本二班学号:1101230235姓名:夏明志指导教师:陈林机械工程学院2013年12月1第1页目录1、课程设计基本任务..........................................22、变压器的概述..............................................3、BK系列单相变压器的设计....................................23.1变压器工作原理........................................23.2变压器基本结构........................................34、变压器基本设计内容.........................................44.1电压参数..............................................44.2铁芯尺寸的确定........................................54.3绕组匝数与导线直径....................................74.4绕组排列及铁芯尺寸的最后确定..........................85、BK-250小型变压器实例设计..................................95.1输入输出容量..........................................95.2铁芯尺寸..............................................95.3绕组匝数..............................................95.4导线直径.............................................105.5窗口面积.............................................115.6层间绝缘方法.........................................125.7外形安装尺寸的确定....................................13结论.........................................................14心得体会.....................................................14谢辞.........................................................15主要参考文献.................................................15成绩评定表...................................................172一.课程设计基本任务一、课程设计题目:BK-250变压器设计二、设计要求各小组成员协作分工,独立完成。通过该设计,初步掌握小型变压器容量、铁心、绕组等设计步骤和方法,熟悉有关规程和设计手册的使用方法。三、设计的主要内容1、输入输出容量的确定2、铁心尺寸的确定3、绕组匝数与导线直径4、绕组排列及铁心尺寸的最后确定6、绝缘方法的确定7、装配尺寸的确定8、讨论说明9、整理成册3二.变压器的概述变压器的最基本型式,包括两组绕有导线之线圈,并且彼此以电感方式称合一起。当一交流电流(具有某一已知频率)流于其中之一组线圈时,于另一组线圈中将感应出具有相同频率之交流电压,而感应的电压大小取决于两线圈耦合及磁交链之程度。一般指连接交流电源的线圈称之为「一次线圈」(Primamarycoil);而跨于此线圈的电压称之为「一次电压.」。在二次线圈的感应电压可能大于或小于一次电压,是由一次线圈与二次线圈间的「匝数比」所决定的。因此,变压器区分为升压与降压变压器两种。大部份的变压器均有固定的铁心,其上绕有一次与二次的线圈。基于铁材的高导磁性,大部份磁通量局限在铁心里,因此,两组线圈藉此可以获得相当高程度之磁耦合。在一些变压器中,线圈与铁心二者间紧密地结合,其一次与二次电压的比值几乎与二者之线圈匝数比相同。因此,变压器之匝数比,一般可作为变压器升压或降压的参考指针。由于此项升压与降压的功能,使得变压器已成为现代化电力系统之一重要附屑物,提升输电电压使得长途输送电力更为经济,至于降压变压器,它使得电力运用方面更加多元化,吾人可以如是说,倘无变压器,则现代工业实无法达到目前发展的现况。电子变压器除了体积较小外,在电力变压器与电子变压器二者之间,并没有明确的分界线。一般提供6OHz电力网络之电源均非常庞大,它可能是涵盖有半个洲地区那般大的容量。电子装置的电力限制,通常受限于整流、放大,与系统其它组件的能力,其中有些部份属放大电力者,但如与电力系统发电能力相比较,它仍然归属于小电力之范围。各种电子装备常用到变压器,理由是:提供各种电压阶层确保系统正常操作;提供系统中以不同电位操作部份得以电气隔离;对交流电流提供高阻抗,但对直流则提供低的阻抗;在不同的电位下,维持或修饰波形与频率响应。「阻抗」其中之一项重要概念,亦即电子学特性之一,其乃预设一种设备,即当电路组件阻抗系从一阶层改变到另外的一个阶层时,其间即使用到一种设备--变压器。对于电子装置而言,重量和空间通常是一项努力追求之目标,至于效率、安全性与可靠性,更是重要的考虑因素。变压器除了能够在一个系统里占有显著百分比的重量和空间外,另一方面在可靠性方面,它亦是衡量因子中之一要项。因为上述与其它应用方面的差别,使得电力变压器并不适合应用于电子电路上.4三.BK系列单相变压器的设计3.1变压器的工作原理变压器的功能主要有:电压变换;阻抗变换;隔离;稳压(磁饱和变压器)等,变压器常用的铁心形状一般有E型和C型铁心。变压器(transformer)是利用电磁感应原理将某一电压的交流换成频率相同的另一电压的交流电的能量的变换装备。变压器的主要部件是一个铁心和套在铁心上的两个绕组,如图(1)所示。一个绕组接电源,称为原绕组(一次绕组、初级),另一个接负载,称为副绕组(二次绕组、次级)。原绕组各量用下标1表示,副绕组各量用下标2表示。原绕组匝数为1N,副绕组匝数为2N。图(1)变压器结构示意图理想状况如下(不计电阻、铁耗和漏磁),原绕组加电压1u,产生电流1i,建立磁通,沿铁心闭合,分别在原副绕组中感应电动势21ee和。(1)电压变换当一次绕组两端加上交流电压1u时,绕组中通过交流电流1i,在铁心中将产生既与一次绕组交链,又与二次绕组交链的主磁通。(1-2)(1-3)(1-4)说明只要改变原、副绕组的匝数比,就能按要求改变电压。(2)电流变换变压器在工作时,二次电流2I的大小主要取决于负载阻抗模|1Z|的大小,而一次电流1I的大小则取决于2I的大小。52211IUIU又(1-5)KIIUUI22121(1-6)说明变压器在改变电压的同时,亦能改变电流。小型变压器的原理:小型单相变压器一般是指工频小容量单相变压器。A.电压比:变压器两组线圈圈数分别为N1和N2,N1为初级,N2为次级.在初级线圈上加一交流电压,在次级线圈两端就会产生感应电动势.当N2N1时,其感应电动势要比初级所加的电压还要高,这种变压器称为升压变压器:当N2N1时,其感应电动势低于初级电压,这种变压器称为降变压器.初级次级电压和线圈圈数间具有下列关系:式中n称为电压比(圈数比).当n1时,则N1N2,V1V2,该变压器为降压变压器.反之则为升压变压器.B.变压器的效率:在额定功率时,变压器的输出功率和输入功率的比值,叫做变压器的效率,即η=x100%式㆗中η为变压器的效率;P1为输入功率,P2为输出功率.当变压器的输出功率P2等于输入功率P1时,效率η等于100%,变压器将不产生任何损耗.但实际上这种变压器是没有的.变压器传输电能时总要产生损耗,这种损耗主要有铜损和铁损.铜损是指变压器线圈电阻所引起的损耗.当电流通过线圈电阻发热时一部分电能就转变为热能而损耗.由于线圈一般都由带绝缘的铜线缠绕而成,因此称为铜损.变压器的铁损包括两个方面.一是磁滞损耗,当交流电流通过变压器时,通过变压器硅钢片的磁力线其方向和大小随之变化,使得硅钢片内部分子相互摩擦,放出热能,从而损耗了一部分电能,这便是磁滞损耗.另一是涡流损耗,当变压器工作时.铁芯中有磁力线穿过,在与磁力线垂直的平面上就会产生感应电流,由于此电流自成闭合回路形成环流,且成旋涡状,故称为涡流.涡流的存在使铁芯发热,消耗能量,这种损耗称为涡流损耗.6变压器的效率与变压器的功率等级有密切关系,通常功率越大,损耗与输出功率就越小,效率也就越高.反之,功率越小,效率也就越低.3.2变压器的基本结构1.铁心1:铁心的作用和形式铁心是变压器的基本部件,由磁导体和夹紧装置组成,所以它有两个作用。在原理上,铁心的磁导体是变压器的磁路。它把一次电路的电能转为磁能,又由自己的磁能转变为二次电路的电能,是能量转换的媒介,磁导体是铁心的主体。在结构上,铁心的夹紧装置不仅使磁导体成为一个机械上完整的结构,而且在其上面套有带绝缘的线圈,支持着引线,几乎安装了变压器内部的所有部件,所以它又是变压器的骨架。铁心的重量在变压器各部件中占有绝对的优势,在干式变压器中占总重量的60%左右,在油浸式变压器中由于有变压器油和油箱,重量的比例才下降约占40%。变压器的铁心(即磁导体)是框形闭合结构。其中,套线圈的部分称心柱,不套线圈只起闭合磁路的部分称铁扼。铁心分为两大类,不套线圈只起闭合磁路的部分称铁扼。铁心分为两大类,壳式铁心和心式铁心。铁扼包围了线圈的称为壳式铁心,否则称心式铁心,由带状硅钢片卷绕而成的称卷铁心。壳式铁心一般是水平放置的,心柱截面为矩形,每相有两个旁扼,壳式铁心的优点是铁心片规格少,心柱截面大而长度短,夹紧和固定方便,漏磁通有闭合回路,附加损耗小,易于油对流散热。缺点是线圈为矩形,工艺特殊,绝缘结构复杂,短路能力差,尤其是硅钢片用量多。心式铁心的优缺点正好与壳式相反,壳式和心式两种结构各有特色,很难断定其劣式。但由其绝缘所决定的制造工艺则大有区别,一旦选定了某一种结构,就很难转而生产另一种结构。正由于这个原因,国内都采用心式铁心,只有在小容量的单相变压器及特殊用途的变压器中采用壳式铁心。铁心用硅钢片铁心用材质是电工硅钢片是在炼刚时加入(3~5)%左右的硅,从而提高了钢片的导磁率和电阻率,减少了钢片中的磁滞损耗和涡流损耗,这种材料由于软磁特性好而用于电工产品中,所以称为硅钢片。7硅钢片表面具有双面耐热绝缘层,多采用磷酸盐涂层,每层厚度不超过3-4um,即使经退火处理,绝缘膜仍不致破坏,在压力为5kg/cm^2的情况下,双面绝缘层表面电阻不小于7052cm^2对变压器铁心做片间绝缘不需再另涂绝缘层。此绝缘膜为透明的灰色。硅钢片的厚度一般为0.28-0.5mm或更薄一些(0.23,0.27)我国冷扎硅钢片的厚度一般为0.35,0.3和0.27mm三种,0.3mm用的比较普遍,做薄的目的是为了限制硅钢片的涡流损耗。此外,硅钢片的涡流也产生磁场,这种磁场要减弱主磁场,硅钢片边缘的涡流磁场较中间弱,因此造成磁通绝大部分沿表面通过,片中间部分实际上不起导磁的作用,因此硅钢片越薄电磁性能越好,但太薄时,在相同铁心柱直径情况下,铁心叠片系数减小,有效截面积相应降低,空载损耗增大,此外铁心制造时片数增多,工时增加,经济效果也差,根据生产实践经验,目前认为冷扎硅钢片厚度在0.28-0.35mm范围内较为合适。电工钢片有热扎和冷扎两种,热扎的磁性能差,磁通密度只能达到1.5T-1.6T,而单位损耗P15/50却大
本文标题:电气工程课程设计.
链接地址:https://www.777doc.com/doc-7347042 .html