您好,欢迎访问三七文档
当前位置:首页 > 幼儿/小学教育 > 小学教育 > 2019届湖北省武汉市调考九年级四月模拟卷试卷四数学试题解析版
2019年武汉市四月调考数学模拟试卷(四)一、选择题(共10小题,每小题3分,共30分).1.在0,-1,1,2这四个数中,最小的数是A.-1B.0C.1D.22.若分式在实数范围内有意义,则实数的取值范围是()A.B.C.D.3.2018年武汉市全市有万名考生参加中考,为了了解这万名考生的数学成绩,从中抽取了名考生的数学成绩进行统计分析,以下说法中,错误的是()A.这种调查采用了抽样调查的方式B.万名考生是总体C.从中抽取的名考生的数学成绩是总体的一个样本D.样本容量是4.点关于原点对称的点的坐标为()A.B.C.D.5.下图是从不同的方向看一个物体得到的平面图形,则该物体的形状是()A.圆锥B.圆柱C.三棱锥D.三棱柱6.某市初中学业水平实验操作考试要求每名学生从物理、化学、生物三个学科中随机抽取一科参加测试,小华和小强都抽到生物学科的概率是()A.B.C.D.7.已知且,则的值为()A.B.C.D.8.如图,二次函数的图像与轴交于两点,与轴交于点,下列说法:当时,;当时,随的增大而增大,其中结论正确的个数有()A.个B.个C.个D.个9.如图,在正方形所在的平面内找一点,使其与正方形中的每一边的两个端点所构成的三角形均是等腰三角形,这样的点共有()A.个B.个C.个D.个10.如图,的半径,弦,将沿向上翻折,与翻折后的弧相切于点,则的长为()A.B.C.D.二、填空题(本大题共6个小题,每小题3分,共18分)11.计算:__________.12.在一个不透明的口袋中装有个红球和若干个白球,它们除颜色外其它完全相同,通过多次摸球实验后发现,摸到红球的概率稳定在附近,则估计口袋中大约共有__________个白球.13.计算的结果是__________.14.已知矩形的对角线相交于点,平分交矩形的边于点,若,则的度数为__________.15.如图,双曲线经过两点,轴,射线经过点,,则的值为__________.16.如图,在矩形中,,点是边上的一动点(不与重合),交边于点,若的最大值为,则的长为__________.三、解答题(共8题,共72分)17.计算:18.如图,求证:19.某市交于局对该市部分学校的九年级学生对待学习的态度进行了一次抽样调查(把学习态度分为三个层次,A级:对学习很感兴趣;B级:对学习较感兴趣;C级:对学习不感兴趣),并将调查结果绘制成图①和②的统计图(不完整).请根据图中提供的信息,解答下列问题;此次抽样调查中,共调查了名学生;图②中C级所占的圆心角度数是;根据抽样调查结果,请你估计该市近名八年级学生中大约有多少名学生学习态度达标(达标包括A级和B级)?20.图1,图2均为正方形网格,每个小正方形的边长均为,各个小正方形的顶点叫做格点,请在下面的网格中按要求分别画图使得每个图形的顶点均在格点上.以为一边,画一个成中心对称的四边形,使其面积等于;以为对角线,画一个成轴对称的四边形,使其面积等于.并直接写出这个四边形的周长.21.如图,为的直径,是的弦,是半圆的中点,交的延长线于点,求证:求的值.22.某华为手机专卖店销售台A型手机和台B型手机的利润为元,销售A型手机和台B型手机的利润为元.求每台A型手机和B型手机的利润;专卖店计划购进两种型号的华为手机共台,其中B型手机的进货量不低于A型手机的倍,设购进的A型手机台,这台手机全部销售的总利润为元.②直接写出关于的函数关系式为,的取值范围是;②该商店如何进货才能使销售总利润最大?说明原因.专卖店预算员按照中的方案准备进货,同时专卖店对A型手机销售价格下调元,结果预算员发现无论按照哪种进货方案最后销售总利润不变,请你直接写出的值是.23.如图,是的角平分线.如图,求证:如图,若求的值;如图,点为上一点,直接写出的长为_______.24.如图,点为抛物线上第一象限内的一点.若点的横、纵坐标相等,求点的坐标;如图,点,过点的直线与抛物线只有唯一的公共点,且直线与轴不平行,直线与轴交于点,连接,若,求点的坐标.2019年武汉市四月调考数学模拟试卷(四)一、选择题(共10小题,每小题3分,共30分).1.在0,-1,1,2这四个数中,最小的数是A.-1B.0C.1D.2【答案】A【解析】考点:有理数大小比较.专题:推理题.分析:根据有理数的大小比较法则判断即可.正数都大于0,负数都小于0,正数大于一切负数.解答:解:∵-1<0<1<2,∴最小的数是-1,故选A.点评:本题考查了对有理数的大小比较的应用,关键是理解法则正数都大于0,负数都小于0,正数大于一切负数.2.若分式在实数范围内有意义,则实数的取值范围是()A.B.C.D.【答案】A【解析】【分析】根据分式的定义即可求解.【详解】依题意得,解得,故选A.【点睛】此题主要考查分式的性质,解题的关键是熟知分式的性质.3.2018年武汉市全市有万名考生参加中考,为了了解这万名考生的数学成绩,从中抽取了名考生的数学成绩进行统计分析,以下说法中,错误的是()A.这种调查采用了抽样调查的方式B.万名考生是总体C.从中抽取的名考生的数学成绩是总体的一个样本D.样本容量是【答案】B【解析】【分析】根据统计分析的总体、样本与样本容量的定义即可判断.【详解】A.这种调查采用了抽样调查的方式,正确;B.万名考生的数学成绩是总体,故错误;C.从中抽取的名考生的数学成绩是总体的一个样本,正确;D.样本容量是,正确;故选B.【点睛】此题主要考查统计分析的总体、样本与样本容量的定义,解题的关键是熟知统计分析的总体、样本与样本容量的定义.4.点关于原点对称的点的坐标为()A.B.C.D.【答案】C【解析】【分析】根据直角坐标系内点的变换即可判断.【详解】点关于原点对称的点的坐标为故选C.【点睛】此题主要考查直角坐标系内点的变换,解题的关键是熟知直角坐标系内点坐标变换特点.5.下图是从不同的方向看一个物体得到的平面图形,则该物体的形状是()A.圆锥B.圆柱C.三棱锥D.三棱柱【答案】A【解析】【分析】根据图形的三视图特点,进行选择.【详解】由题意图形的三视图可判断图形为圆锥.故答案选A.【点睛】本题主要考查的是三视图的性质特征,熟练掌握三视图的性质特征是本题的解题关键.6.某市初中学业水平实验操作考试要求每名学生从物理、化学、生物三个学科中随机抽取一科参加测试,小华和小强都抽到生物学科的概率是()A.B.C.D.【答案】D【解析】【分析】根据题意画出树状图,再根据概率公式进行求解即可.【详解】如图,所有可能的情况如下,∴P(都抽到生物学科)=故选D.【点睛】此题主要考查概率的计算,解题的关键是根据题意画出树状图.7.已知且,则的值为()A.B.C.D.【答案】B【解析】【分析】把两方程相加得到,即可求解.【详解】①+②得,解得a=0.故选B.【点睛】此题主要考查二元一次方程组的求解,解题的关键是熟知二元一次方程组的解法.8.如图,二次函数的图像与轴交于两点,与轴交于点,下列说法:当时,;当时,随的增大而增大,其中结论正确的个数有()A.个B.个C.个D.个【答案】D【解析】【分析】令y=0,即,可得A,B的坐标,令x=0,得y=-3,得C点坐标,再根据图像进行求解即可.【详解】y=0,得=0,解得x1=-1,x2=3,∴A(-1,0),B(3,0)∴,①正确;x=0,得y=-3,得C点坐标为(0,-3)则OC=OB,故,②正确;当x=2时,y=-3,当x==1,y=-4,∴当时,,③正确函数的顶点坐标为(1,-4),当时,随的增大而增大,④正确;故选D.【点睛】此题主要考查二次函数的图像,解题的关键是熟知二次函数的图像与性质.9.如图,在正方形所在的平面内找一点,使其与正方形中的每一边的两个端点所构成的三角形均是等腰三角形,这样的点共有()A.个B.个C.个D.个【答案】D【解析】【分析】根据正方形的性质得出正方形内个,外个,共个,是.以正方形的各边向正方形内或外部作等边三角形的顶点,还有一个为正方形的对角线交点【详解】如图,以正方形的各边向正方形内或外部作等边三角形,这些三角形的顶点为P点,还有一个为正方形的对角线交点也满足题意,故选D.【点睛】此题主要考查正方形的性质,解题的关键是熟知等腰三角形的判定方法.10.如图,的半径,弦,将沿向上翻折,与翻折后的弧相切于点,则的长为()A.B.C.D.【答案】C【解析】【分析】作点关于的对称点,连接,根据圆的对称性与勾股定理即可求解.【详解】解析:作点关于的对称点,连接,则,设垂足为点,,中由勾股定理得.故选C.【点睛】此题主要考查垂径定理与切线的性质,解题的关键是根据圆的对称性解题.二、填空题(本大题共6个小题,每小题3分,共18分)11.计算:__________.【答案】【解析】【分析】根据特殊角的三角函数值即可求解.【详解】原式=2-=【点睛】此题主要考查特殊角的三角函数值,解题的关键是熟知特殊角的三角函数值.12.在一个不透明的口袋中装有个红球和若干个白球,它们除颜色外其它完全相同,通过多次摸球实验后发现,摸到红球的概率稳定在附近,则估计口袋中大约共有__________个白球.【答案】【解析】【分析】根据概率的定义,设白球约为x个,依题意得,即可求出白球的数量.【详解】设白球约为x个,依题意得,解得x=15,即白球约为15个.【点睛】此题主要考查概率公式的应用,解题的关键是根据题意列出方程进行求解.13.计算的结果是__________.【答案】【解析】【分析】先把所给的分式通分,再约分化为最简分式即可.【详解】原式===.故答案为:.【点睛】本题考查了分式的加减运算,熟知分式的加减运算法则是解决问题的关键.14.已知矩形的对角线相交于点,平分交矩形的边于点,若,则的度数为__________.【答案】70°或110°【解析】【分析】根据可分情况作图,利用矩形的性质与等腰三角形的性质即可求解.【详解】如图,AE平分∠BAD,∴∠DAE=45°,∵∠CAE=10°,∴∠DAO=35°,∵AO=DO,∴∠ADO=∠DAO=35°∴∠AOB=∠ADO+∠DAO=70°;如图,∠DAE=45°,∴∠DAO=∠DAE+∠CAE=55°,同理∠ADO=∠DAO=55°∴∠AOB=∠ADO+∠DAO=110°;故的度数为70°或110°.【点睛】此题主要考查矩形的性质,解题的关键是熟知矩形的性质进行求解.15.如图,双曲线经过两点,轴,射线经过点,,则的值为__________.【答案】【解析】【分析】设点C为(a,),由,得BC=,故B(),由可得A点坐标为(),再根据A点在反比例函数上得()×=k,即可求出k的值.【详解】设点C为(a,),∵BC=,故B(),∵,∴A点坐标为(),∵A点在反比例函数上∴()×=k,解得k=2.【点睛】此题主要考查反比例函数的图像,解题的关键是根据题意得到坐标间的关系.16.如图,在矩形中,,点是边上的一动点(不与重合),交边于点,若的最大值为,则的长为__________.【答案】【解析】【分析】根据题意当与相切于点时,最大,如图故连接并延长交于点,根据三角形的中位线与勾股定理即可得出AD=2AM的值.【详解】点是上一动点,当与相切于点时,最大,连接并延长交于点,则,在中,.【点睛】此题主要考查矩形的性质与圆切线的应用,解题的关键是根据作出辅助线进行求解.三、解答题(共8题,共72分)17.计算:【答案】【解析】【分析】根据幂的乘方公式即可进行求解.【详解】原式=4a2-3a2+a2=2a2.【点睛】此题主要考查幂的乘方公式,解题的关键是熟知幂的乘方公式的应用.18.如图,求证:【答案】见解析.【解析】【分析】根据平行线的性质与判定即可求解.【详解】∵∴∠B=∠C,∵∴∴【点睛】此题主要考查平行线的性质与判定,解题的关键是熟知平行线的性质与判定的方法.19.某市交于局对该市部分学校的九年级学生对待学习的态度进行了一次抽样调查(把学习态度分为三个层次,A级:对学习很感兴趣;B级:对学习较感兴趣;C级:对学习不感兴趣),并将调查结果绘制成图①
本文标题:2019届湖北省武汉市调考九年级四月模拟卷试卷四数学试题解析版
链接地址:https://www.777doc.com/doc-7350130 .html