您好,欢迎访问三七文档
当前位置:首页 > 幼儿/小学教育 > 小学教育 > 2019年湖北省武汉市武昌区中考数学模拟试卷3月份解析版
2019年湖北省武汉市武昌区中考数学模拟试卷(3月份)一、选择题(共10小题,每小题3分,共30分)1.(3分)化简的结果为()A.±5B.25C.﹣5D.52.(3分)若分式在实数范围内有意义,则实数x的取值范围是()A.x>﹣2B.x<﹣2C.x=﹣2D.x≠﹣23.(3分)下列运算正确的是()A.3x2+4x2=7x4B.2x3•3x3=6x3C.x6÷x3=x2D.(x2)4=x84.(3分)五名女生的体重(单位:kg)分别为:37、40、38、42、42,这组数据的众数和中位数分别是()A.2、40B.42、38C.40、42D.42、405.(3分)运用乘法公式计算(a+3)(a﹣3)的结果是()A.a2﹣6a+9B.a2﹣3a+9C.a2﹣9D.a2﹣6a﹣96.(3分)点P(2,﹣5)关于y轴的对称点的坐标是()A.(﹣2,5)B.(2,5)C.(﹣5,2)D.(﹣2,﹣5)7.(3分)一枚质地均匀的骰子,其六个面上分别标有数字1,2,3,4,5,6,投掷一次,朝上一面的数字是偶数的概率为()A.B.C.D.8.(3分)西周时期,丞相周公旦设置过一种通过测定日影长度来确定时间的仪器,称为圭表.如图是一个根据北京的地理位置设计的圭表,其中,立柱AC高为a.已知,冬至时北京的正午日光入射角∠ABC约为26.5°,则立柱根部与圭表的冬至线的距离(即BC的长)约为()A.asin26.5°B.C.acos26.5°D.9.(3分)如图,在平面直角坐标系中,点P(1,4)、Q(m,n)在函数y=(k>0)的图象上,当m>1时,过点P分别作x轴、y轴的垂线,垂足为点A、B;过点Q分别作x轴、y轴的垂线,垂足为点C、D,QD交PA于点E,随着m的增大,四边形ACQE的面积()A.增大B.减小C.先减小后增大D.先增大后减小10.(3分)如图,在Rt△ABC中,∠A=90°,AB=6,AC=8,点D为边BC的中点,点M为边AB上的一动点,点N为边AC上的一动点,且∠MDN=90°,则sin∠DMN为()A.B.C.D.二、填空题(共6小题,每小题3分,共18分)11.(3分)计算:cos45°=.12.(3分)计算结果是.13.(3分)将对边平行的纸带折叠成如图所示,已知∠1=52°,则∠α=.14.(3分)如图,△ABC中,D、E分别为AB、AC的中点,则△ADE与△ABC的面积比为.15.(3分)如图,已知四边形ABCD是平行四边形,BC=2AB.A,B两点的坐标分别是(﹣1,0),(0,2),C,D两点在反比例函数y=(k<0)的图象上,则k等于.16.(3分)如图,等边三角形ABC中,AB=3,点D在直线BC上,点E在直线AC上,且∠BAD=∠CBE,当BD=1时,则AE的长为.三、解答题(共8小题,共72分)17.(8分)解方程组.18.(8分)如图,在正方形ABCD中,点E是BC的中点,点P在BC的延长线上,AP与DE、CD分别交于点G、F.DF=2CF,AB=6,求DG的长.19.(8分)某校团委为了教育学生,开展了以感恩为主题的有奖征文活动,并为获奖的同学颁发奖品.小红与小明去文化商店购买甲、乙两种笔记本作为奖品,若买甲种笔记本20个,乙种笔记本10个,共用110元;且买甲种笔记本30个比买乙种笔记本20个少花10元.(1)求甲、乙两种笔记本的单价各是多少元?(2)若本次购进甲种笔记本的数量比乙种笔记本的数量的2倍还少10个,且购进两种笔记本的总数量不少于80本,总金额不超过320元.请你设计出本次购进甲、乙两种笔记本的所有方案.20.(8分)“今有邑,东西七里,南北九里,各开中门,出东门一十五里有木,问:出南门几何步而见木?”这段话摘自《九章算术》,意思是说:如图,矩形城池ABCD,东边城墙AB长9里,南边城墙AD长7里,东门点E,南门点F分别是AB、AD的中点,EG⊥AB,FH⊥AD,EG=15里,HG经过点A,问FH多少里?21.(8分)已知:如图,在△ABC中,点D在边AC上,BD的垂直平分线交CA的延长线于点E,交BD于点F,联结BE,ED2=EA•EC.(1)求证:∠EBA=∠C;(2)如果BD=CD,求证:AB2=AD•AC.22.(10分)如图,已知C,D是反比例函数y=图象在第一象限内的分支上的两点,直线CD分别交x轴、y轴于A,B两点,设C,D的坐标分别是(x1,y1)、(x2,y2),且x1<x2,连接OC、OD.(1)若x1+y1=x2+y2,求证:OC=OD;(2)tan∠BOC=,OC=,求点C的坐标;(3)在(2)的条件下,若∠BOC=∠AOD,求直线CD的解析式.23.(10分)已知⊙O的直径AB=2,弦AC与弦BD交于点E.且OD⊥AC,垂足为点F.(1)如图1,如果AC=BD,求弦AC的长;(2)如图2,如果E为弦BD的中点,求∠ABD的余切值;(3)联结BC、CD、DA,如果BC是⊙O的内接正n边形的一边,CD是⊙O的内接正(n+4)边形的一边,求△ACD的面积.24.(12分)在平面直角坐标系xOy中,直线y=4x+4与x轴,y轴分别交于点A,B,抛物线y=ax2+bx﹣3a经过点A,将点B向右平移5个单位长度,得到点C.(1)求点C的坐标;(2)求抛物线的对称轴;(3)若抛物线与线段BC恰有一个公共点,结合函数图象,求a的取值范围.2019年湖北省武汉市武昌区中考数学模拟试卷(3月份)参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)1.(3分)化简的结果为()A.±5B.25C.﹣5D.5【分析】根据算术平方根的定义,直接得出表示25的算术平方根,即可得出答案.【解答】解:∵表示25的算术平方根,∴=5.故选:D.【点评】此题主要考查了算术平方根的定义,此题容易出错选择A,应引起同学们的注意.2.(3分)若分式在实数范围内有意义,则实数x的取值范围是()A.x>﹣2B.x<﹣2C.x=﹣2D.x≠﹣2【分析】直接利用分式有意义的条件分析得出答案.【解答】解:∵代数式在实数范围内有意义,∴x+2≠0,解得:x≠﹣2.故选:D.【点评】此题主要考查了分式有意义的条件,正确把握定义是解题关键.3.(3分)下列运算正确的是()A.3x2+4x2=7x4B.2x3•3x3=6x3C.x6÷x3=x2D.(x2)4=x8【分析】根据单项式乘单项式、合并同类项、幂的乘方与积的乘方的定义解答.【解答】解:A、∵3x2+4x2=7x2≠7x4,故本选项错误;B、∵2x3•3x3=2×3x3+3≠6x3,故本选项错误;C、∵x6和x3不是同类项,不能合并,故本选项错误;D、∵(x2)4=x2×4=x8,故本选项正确.故选:D.【点评】本题考查了单项式乘单项式、合并同类项、幂的乘方与积的乘方,熟练掌握运算法则是解题的关键.4.(3分)五名女生的体重(单位:kg)分别为:37、40、38、42、42,这组数据的众数和中位数分别是()A.2、40B.42、38C.40、42D.42、40【分析】根据众数和中位数的定义求解.【解答】解:这组数据的众数和中位数分别42,40.故选:D.【点评】本题考查了众数:一组数据中出现次数最多的数据叫做众数.也考查了中位数.5.(3分)运用乘法公式计算(a+3)(a﹣3)的结果是()A.a2﹣6a+9B.a2﹣3a+9C.a2﹣9D.a2﹣6a﹣9【分析】将原式直接套用平方差公式展开即可得.【解答】解:(a+3)(a﹣3)=a2﹣32=a2﹣9,故选:C.【点评】本题主要考查平方差公式,熟练掌握(a+b)(a﹣b)=a2﹣b2是关键.6.(3分)点P(2,﹣5)关于y轴的对称点的坐标是()A.(﹣2,5)B.(2,5)C.(﹣5,2)D.(﹣2,﹣5)【分析】熟悉:平面直角坐标系中任意一点P(x,y),关于y轴的对称点的坐标是(﹣x,y).【解答】解:点P(2,﹣5)关于y轴的对称点的坐标是:(﹣2,﹣5).故选:D.【点评】此题主要考查了平面直角坐标系中关于坐标轴成轴对称的两点的坐标之间的关系.是需要识记的内容.记忆方法是结合平面直角坐标系的图形记忆,另一种记忆方法是记住:关于纵轴的对称点,纵坐标不变,横坐标变成相反数.7.(3分)一枚质地均匀的骰子,其六个面上分别标有数字1,2,3,4,5,6,投掷一次,朝上一面的数字是偶数的概率为()A.B.C.D.【分析】直接得出偶数的个数,再利用概率公式求出答案.【解答】解:∵一枚质地均匀的骰子,其六个面上分别标有数字1,2,3,4,5,6,投掷一次,∴朝上一面的数字是偶数的概率为:=.故选:C.【点评】此题主要考查了概率公式,正确应用概率公式是解题关键.8.(3分)西周时期,丞相周公旦设置过一种通过测定日影长度来确定时间的仪器,称为圭表.如图是一个根据北京的地理位置设计的圭表,其中,立柱AC高为a.已知,冬至时北京的正午日光入射角∠ABC约为26.5°,则立柱根部与圭表的冬至线的距离(即BC的长)约为()A.asin26.5°B.C.acos26.5°D.【分析】根据题意和图形,可以用含a的式子表示出BC的长,从而可以解答本题.【解答】解:由题意可得,立柱根部与圭表的冬至线的距离为:,故选:B.【点评】本题考查解直角三角形的应用,解答本题的关键是明确题意,利用锐角三角函数解答.9.(3分)如图,在平面直角坐标系中,点P(1,4)、Q(m,n)在函数y=(k>0)的图象上,当m>1时,过点P分别作x轴、y轴的垂线,垂足为点A、B;过点Q分别作x轴、y轴的垂线,垂足为点C、D,QD交PA于点E,随着m的增大,四边形ACQE的面积()A.增大B.减小C.先减小后增大D.先增大后减小【分析】首先利用m和n表示出AC和CQ的长,则四边形ACQE的面积即可利用m、n表示,然后根据函数的性质判断.【解答】解:AC=m﹣1,CQ=n,则S四边形ACQE=AC•CQ=(m﹣1)n=mn﹣n.∵P(1,4)、Q(m,n)在函数y=(x>0)的图象上,∴mn=k=4(常数).∴S四边形ACQE=AC•CQ=4﹣n,∵当m>1时,n随m的增大而减小,∴S四边形ACQE=4﹣n随m的增大而增大.故选:A.【点评】本题考查了反比例函数的性质以及矩形的面积的计算,利用n表示出四边形ACQE的面积是关键.10.(3分)如图,在Rt△ABC中,∠A=90°,AB=6,AC=8,点D为边BC的中点,点M为边AB上的一动点,点N为边AC上的一动点,且∠MDN=90°,则sin∠DMN为()A.B.C.D.【分析】连结AD,如图,先利用勾股定理计算出BC=10,再根据直角三角形斜边上的中线性质得DA=DC=5,则∠1=∠C,接着根据圆周角定理得到点A、D在以MN为直径的圆上,所以∠1=∠DMN,则∠C=∠DMN,然后在Rt△ABC中利用正弦定义求∠C的正弦值即可得到sin∠DMN.【解答】解:连结AD,如图,∵∠A=90°,AB=6,AC=8,∴BC=10,∵点D为边BC的中点,∴DA=DC=5,∴∠1=∠C,∵∠MDN=90°,∠A=90°,∴点A、D在以MN为直径的圆上,∴∠1=∠DMN,∴∠C=∠DMN,在Rt△ABC中,sinC===,∴sin∠DMN=,故选:A.【点评】本题考查了相似三角形的判定与性质:在判定两个三角形相似时,应注意利用图形中已有的公共角、公共边等隐含条件,以充分发挥基本图形的作用,寻找相似三角形的一般方法是通过作平行线构造相似三角形.也考查了直角三角形斜边上的中线性质.二、填空题(共6小题,每小题3分,共18分)11.(3分)计算:cos45°=.【分析】根据特殊角的三角函数值计算即可.【解答】解:根据特殊角的三角函数值可知:cos45°=.故答案为.【点评】本题主要考查了特殊角的三角函数值,比较简单,熟练掌握特殊角的三角函数值是解答的关键.12.(3分)计算结果是1.【分析】根据同分母的分式相加的法则,分母不变分子相加减,再约分即可得出结果.【解答】解:原式==1,故答案为1.【点评】本题是
本文标题:2019年湖北省武汉市武昌区中考数学模拟试卷3月份解析版
链接地址:https://www.777doc.com/doc-7350173 .html