您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 2019年上海市闵行区七宝中学高考数学一模试卷含解析版
2019年上海市闵行区七宝中学高考数学一模试卷一、填空题1.(3分)设A={x||x|≤2018,x∈R},B={x|y=,x∈R},则A∩B=.2.(3分)已知定义域在[﹣1,1]上的函数y=f(x)的值域为[﹣2,0],则函数y=f(cos)的值域是.3.(3分)若行列式的展开式的绝对值小于6的解集为(﹣1,2),则实数a等于.4.(3分)在(0,2π)内使sin3x>cos3x成立的x的取值范围是.5.(3分)在等差数列{an}中,S7=8,则a4=.6.(3分)已知f(x+1)=2x﹣2,那么f﹣1(2)的值是.7.(3分)甲、乙、丙、丁四位同学站成一排照相留念,已知甲、乙相邻,则甲、丙相邻的概率为.8.(3分)若P(x,y)是双曲线上的动点,则|x﹣y|最小值是.9.(3分)设点P到平面α的距离为,点Q在平面α上,使得直线PQ与平面α所成角不小于30°且不大于60°,则这样的PQ所构成的区域体积为.10.(3分)已知AB为单位圆上弦长为的弦,P为单位圆上的点,若f(λ)=||的最小值为m(其中λ∈R),当点P在单位圆上运动时,则m的最大值为.11.(3分)已知函数f(a,x)=sinx+cosx随着a,x在定义域内变化时,该函数的最大值为12.(3分)已知定义在R+上的函数f(x)=,设a,b,c为三个互不相同的实数,满足,f(a)=f(b)=f(c),则abc的取值范围为.二、选择题13.(3分)设集合P1={x|x2+ax+1>0},P2={x|x2+ax+2>0},其中a∈R,下列说法正确的是()A.对任意a,P1是P2的子集B.对任意a,P1不是P2的子集C.存在a,使得P1不是P2的子集D.存在a,使得P2是P1的子集14.(3分)△ABC中,a2:b2=tanA:tanB,则△ABC一定是()A.等腰三角形B.直角三角形C.等腰直角三角形D.等腰或直角三角形15.(3分)抛物线y=2x2上有一动弦AB,中点为M,且弦AB的长度为3,则点M的纵坐标的最小值为()A.B.C.D.116.(3分)已知正数数列{an}满足an+1≥2an+1,且an<2n+1对n∈N*恒成立,则a1的范围为()A.[1,3]B.(1,3)C.(0,3]D.(0,4)三、解答题17.在长方体ABCD﹣A1B1C1D1中(如图),AD=AA1=1,AB=2,点E是棱AB的中点.(1)求异面直线AD1与EC所成角的大小;(2)《九章算术》中,将四个面都是直角三角形的四面体称为鳖臑,试问四面体D1CDE是否为鳖臑?并说明理由.18.设S,T是R的两个非空子集,如果函数y=f(x)满足:①T={f(x)|x∈S};②对任意x1,x2,当x1<x2时,恒有f(x1)<f(x2),那么称函数y=f(x)为集合S到集合T的“保序同构函数”.(1)试判断下列函数f(x)=,f(x)=tan(πx﹣)是否是集合A={x|0<x<1}到集合R的保序同构函数;请说明理由.(2)若f(x)=是集合[0,s]到集合[0,t]是保序同构函数,求s和t的最大值.19.如图,已知一个长方形展览大厅长为20m,宽为16m,展厅入口位于其长边的中间位置,为其正中央有一个圆心为C的圆盘形展台,现欲在展厅一角B点处安装一个监控摄像头对展台与入口进行监控(如图中阴影所示),要求B与圆C在同一水平面上.(1)若圆盘半径为2m,求监控摄像头最小水平摄像视角的正切值;(2)若监控摄像头最大水平摄像视角为60°,求圆盘半径的最大值.(注:水平摄像视角指镜头中心点与水平观察物体边缘的视线的夹角)20.已知椭圆C:=1(a>b>0)的左右焦点分别为F1,F2,过F1任作一条与坐标轴都不垂直的直线,与C交于A,B两点,且△ABF2的周长为8.当直线AB的斜率为时,AF2与x轴垂直.(1)求椭圆C的方程(2)若A是该椭圆上位于第一象限的一点,过A作圆x2+y2=b2的切线,切点为P,求|AF1|﹣|AP|的值;(3)设P(0,m)(m≠±b)为定点,直线l过点P与x轴交于点Q,且与椭圆交于C,D两点,设=,=,求λ+μ的值.21.设正项数列{an}的前n项和为Sn,首项为1,q为非零正常数,已知对任意整数n,m,当n>m时,Sn﹣Sm=qm•Sn﹣m恒成立.(1)求数列{an}的通项公式;(2)证明数列{}是递增数列;(3)是否存在正常数c使得{lg(c﹣Sn)}为等差数列?若存在,求出常数c的值;若不存在,说明理由.2019年上海市闵行区七宝中学高考数学一模试卷参考答案与试题解析一、填空题1.(3分)设A={x||x|≤2018,x∈R},B={x|y=,x∈R},则A∩B=∅.【考点】1E:交集及其运算.【专题】11:计算题;37:集合思想;49:综合法;5J:集合.【分析】可解出集合A,B,然后进行交集的运算即可.【解答】解:A={x|﹣2018≤x≤2018},B={2019};∴A∩B=∅.故答案为:∅.【点评】考查描述法、列举法的定义,绝对值不等式的解法,以及交集的运算.2.(3分)已知定义域在[﹣1,1]上的函数y=f(x)的值域为[﹣2,0],则函数y=f(cos)的值域是[﹣2,0].【考点】34:函数的值域.【专题】51:函数的性质及应用.【分析】可以看出﹣1,从而对应的函数值,这便得出了该函数的值域.【解答】解:∵cos∈[﹣1,1];∴;即y∈[﹣2,0];∴该函数的值域为[﹣2,0].故答案为:[﹣2,0].【点评】考查函数定义域、值域的概念,本题可换元求值域:令cos=t,﹣1≤t≤1,从而得出f(t)∈[﹣2,0].3.(3分)若行列式的展开式的绝对值小于6的解集为(﹣1,2),则实数a等于4.【考点】ON:二阶行列式与逆矩阵.【专题】11:计算题;35:转化思想;4R:转化法;5R:矩阵和变换.【分析】推导出|ax﹣2|<6的解集为(﹣1,2),从而﹣4<ax<8解集为(﹣1,2),由此能求出a的值.【解答】解:∵行列式的展开式的绝对值小于6的解集为(﹣1,2),∴|ax﹣2|<6的解集为(﹣1,2),∴﹣6<ax﹣2<6,即﹣4<ax<8解集为(﹣1,2),解得a=4.故答案为:4.【点评】本题考查实数值的求法,考查行列式展开法则、不等式的性质等基础知识,考查运算求解能力,是基础题.4.(3分)在(0,2π)内使sin3x>cos3x成立的x的取值范围是(,).【考点】HF:正切函数的单调性和周期性.【专题】33:函数思想;4R:转化法;51:函数的性质及应用.【分析】解不等式sin3x>cos3x,求出x∈(0,2π)不等式的解集即可.【解答】解:sin3x>cos3x,∴sin3x﹣cos3x>0,即(sinx﹣cosx)(sin2x+sinxcosx+cos2x)>0,∴(sinx﹣cosx)(1+sin2x);又1+sin2x>0恒成立,∴sinx﹣cosx>0,即sin(x﹣)>0,∴x﹣∈(2kπ,2kπ+π),解得x∈(2kπ+,2kπ+),k∈Z;又(0,2π),∴使sin3x>cos3x成立的x的取值范围是(,).故答案为:(,).【点评】本题考查了三角函数的图象与性质的应用问题,也考查了转化应用问题,是中档题.5.(3分)在等差数列{an}中,S7=8,则a4=.【考点】84:等差数列的通项公式.【专题】33:函数思想;4R:转化法;54:等差数列与等比数列.【分析】由等差数列的性质及前n项和列式求解.【解答】解:在等差数列{an}中,由S7=,得.故答案为:.【点评】本题考查等差数列的前n项和,考查等差数列的性质,是基础题.6.(3分)已知f(x+1)=2x﹣2,那么f﹣1(2)的值是3.【考点】4R:反函数.【专题】11:计算题.【分析】令t=x+1,将已知等式中的x一律换为t,求出f(t)即得到f(x),然后令f(x)=2x﹣1﹣2=2,求出相应的x,即为f﹣1(2)的值.【解答】解:令t=x+1则x=t﹣1所以f(t)=2t﹣1﹣2所以f(x)=2x﹣1﹣2令f(x)=2x﹣1﹣2=2,解得x=3∴f﹣1(2)=3故答案为:3.【点评】已知f(ax+b)的解析式,求f(x)的解析式,一般用换元的方法或配凑的方法,换元时,注意新变量的范围,同时考查了反函数求值,属于基础题.7.(3分)甲、乙、丙、丁四位同学站成一排照相留念,已知甲、乙相邻,则甲、丙相邻的概率为.【考点】CB:古典概型及其概率计算公式.【专题】5I:概率与统计.【分析】4人排成一排,其中甲、乙相邻的情况有12种,其中甲丙相邻的只有4种,由此能求出甲乙相邻,则甲丙相邻的概率.【解答】解:甲、乙相邻的方法有=12种情况,如果满足甲、丙相邻,则有=4种情况,所以所求的概率为P==.故答案为:.【点评】本题考查概率的求法,是基础题,解题时要认真审题,注意等可能事件概率计算公式的合理运用.8.(3分)若P(x,y)是双曲线上的动点,则|x﹣y|最小值是2.【考点】KC:双曲线的性质.【专题】11:计算题;35:转化思想;49:综合法;5D:圆锥曲线的定义、性质与方程.【分析】利用双曲线方程,通过三角代换转化求解x,y,然后求解|x﹣y|的最小值.【解答】解:P(x,y)是双曲线上的动点,设:x=,y=2tanθ,所以|x﹣y|=|﹣2tanθ|==,表达式的几何意义是单位圆上的点与(0,)距离的2倍,可得:∈[2,2+2],故答案为:22.【点评】本题考查双曲线的简单性质的应用,考查转化思想以及计算能力.9.(3分)设点P到平面α的距离为,点Q在平面α上,使得直线PQ与平面α所成角不小于30°且不大于60°,则这样的PQ所构成的区域体积为.【考点】LF:棱柱、棱锥、棱台的体积.【专题】39:运动思想;44:数形结合法;5F:空间位置关系与距离.【分析】由题意画出图形,分别求出两个圆锥的半径,代入圆锥体积公式作差即可.【解答】解:如图,过P作PO⊥α,则PO=,当∠PQO=60°时,OQ=1,当∠PQO=30°时,OQ=3.∴PQ所构成的区域体积为V=.故答案为:.【点评】本题考查圆锥体积的求法,考查空间想象能力与思维能力,是中档题.10.(3分)已知AB为单位圆上弦长为的弦,P为单位圆上的点,若f(λ)=||的最小值为m(其中λ∈R),当点P在单位圆上运动时,则m的最大值为.【考点】J9:直线与圆的位置关系.【专题】31:数形结合;4R:转化法;5B:直线与圆.【分析】设λ=,根据向量减法的运算法则,转化为点到直线的距离,利用直线和圆相交时的垂径定理结合勾股定理进行求解即可.【解答】解:设λ=,则f(λ)=||=|﹣|=||,又C点在直线AB上,要求f(λ)最小值,等价为求出||的最小值,显然当CP⊥AB时,CP最小,可得f(λ)的最小值m为点P到AB的距离,∵|AB|=,∴|BC|=,则|OC|===,则|CP|=|OP|+|OC|=1+=,即m的最大值为,故答案为:.【点评】本题考查向量共线定理的运用,以及圆的垂径定理和勾股定理的运用,利用向量的基本运算结合数形结合是解决本题的关键.综合性较强,有一定的难度.11.(3分)已知函数f(a,x)=sinx+cosx随着a,x在定义域内变化时,该函数的最大值为2【考点】3H:函数的最值及其几何意义.【专题】35:转化思想;48:分析法;57:三角函数的图象与性质;59:不等式的解法及应用.【分析】运用辅助角公式和正弦函数的值域可得f(a,x)≤,再由柯西不等式,计算可得所求最大值.【解答】解:函数f(a,x)=sinx+cosx=sin(x+θ)(θ为辅助角),即有f(a,x)≤(sin(x+θ)=1取得等号),由柯西不等式可得(+)2≤(1+1)(a+1﹣a)=2,当且仅当a=时,取得等号,即有+≤,即f(a,x)的最大值为2.故答案为:2.【点评】本题考查函数的最值求法,注意运用辅助角公式和正弦函数的值域,以及柯西不等式,考查运算能力,属于中档题.12.(3分)已知定义在R+上的函数f(x)=,设a,b
本文标题:2019年上海市闵行区七宝中学高考数学一模试卷含解析版
链接地址:https://www.777doc.com/doc-7350686 .html