您好,欢迎访问三七文档
7一元二次函数20181.在某一问题中,保持的量叫常量,可以取的量,叫做变量.不变不同数值2.函数:在同一变化过程中,有两个变量x和y,如果对于x的每—个值,y都有______________与之对应,我们就把y叫做x的函数,其中x叫做自变量.如果自变量x取a时,y的值是b,就把b叫做x=a时的函数值.唯一确定的值3.平面直角坐标系:在平面内画两条互相垂直而且有公共原点的数轴,水平的一条叫做x轴或横轴,习惯上取向的方向为正方向,的一条叫做或,取向上的方向为正方向,这就组成了平面直角坐标系.y轴纵轴右铅直一次函数:若两个变量x、y之间的关系可以表示成y=kx+b(k,b为常数,k≠0)的形式,则称y是x的一次函数。(x为自变量,y为因变量)当b=0时,称y=kx是x的正比例函数知识点回顾:1、一次函数的图像有何特征?一次函数的图像是一条。当时,y随x的增大而增大;当时,y随x的增大而减小。直线k0k02、画函数图像的基本步骤是:、、。列表描点连线作出一次函数y=2x和Y=2X+1的图象一次函数做图步骤1列表2描点3连线8642-2-4-6-8-10-5510YXOY=2XY=2X+1-10-9-8-7-6-5-4-3-2-1-1-2-3-4-5-612345612345678-7-8认识一元二次函数二次函数的一般形式是怎样的?y=ax²+bx+c(a,b,c是常数,a≠0)定义中应该注意的几个问题:1.定义:一般地,形如y=ax²+bx+c(a,b,c是常数,a≠0)的函数叫做x的二次函数.y=ax²+bx+c(a,b,c是常数,a≠0)2.几种不同表示形式:(1)y=ax²---------(a≠0,b=0,c=0,).(2)y=ax²+c------(a≠0,b=0,c≠0).(3)y=ax²+bx----(a≠0,b≠0,c=0).下列函数中,哪些是二次函数?2)1()2)(2()5(xxxyxxy1)2(232)4(2xxy23)1(2xy()()()否是否否())3)(2()3(xxy是()(6)y=ax+bx+c⒉在二次函数y=ax²+bx+c(a≠0)中,a、b、c分别叫做二次项系数、一次项系数、常数项。填表:y=ax²+bx+c(a≠0)abcy=6x²y=x²+3x-2y=(2x+3)(x-1)y=2+(x-1)²二次函数中,x=-2时,y=;当y=2时,x=;522xxy6003-210-2621-31-23-3-1或3y=-2x²+6解:依题意得m2+m-4=2m-2≠0解得m=-3∴当m=-3时,原函数为二次函数。已知函数(1)当k时,y是x的二次函数?(2)当k时,y是x的一次函数?kkxxkky2)(2242)2(mmxmy若是关于x的二次函数,求m的值。≠0且k≠1=1火眼金睛你会用描点法画二次函数y=x2的图象吗?观察y=x2的表达式,选择适当x值,并计算相应的y值,完成下表:x…-3-2-10123…y=x2……9411049画函数图象的基本步骤:列表,描点,连线。xy0-4-3-2-11234108642-2描点,连线y=x2?2xy二次函数y=x2的图象形如物体抛射时所经过的路线,我们把它叫做抛物线二次函数y=x2的图象是一条曲线,它的形状类似于投篮球时球在空中所经过的路线,只是这条曲线开口向上,这条曲线叫做抛物线y=x2,-33369二次函数的图象都是抛物线。一般地,二次函数y=ax2+bx+c(a≠0)的图象叫做抛物线y=ax2+bx+c思考:这个二次函数图象有什么特征?(1)形状是开口向上的抛物线(2)图象关于y轴对称(3)有最低点,没有最高点y轴是抛物线y=x2的对称轴,抛物线y=x2与它的对称轴的交点(0,0)叫做抛物线y=x2的顶点,它是抛物线y=x2的最低点.-33369实际上,每条抛物线都有对称轴,抛物线与对称轴的交点叫做抛物线的顶点.顶点是抛物线的最低点或最高点.思考:这个二次函数图象有什么特征?(1)形状是开口向上的抛物线(2)图象关于y轴对称(3)有最低点,没有最高点2xy当x0(在对称轴的左侧)时,y随着x的增大而减小.当x0(在对称轴的右侧)时,y随着x的增大而增大.当x=-2时,y4当x=-1时,y=1当x=1时,y=1当x=2时,y=4抛物线y=x2在x轴的上方(除顶点外),顶点是它的最低点,开口向上,并且向上无限伸展;当x=0时,函数y的值最小,最小值是0.xy0-4-3-2-11234108642-21y=x2这条抛物线关于y轴对称,y轴就是它的对称轴.对称轴与抛物线的交点叫做抛物线的顶点.当x0(在对称轴的右侧)时,y随着x的增大而增大.当x0(在对称轴的左侧)时,y随着x的增大而减小.抛物线y=x2在x轴的上方(除顶点外),顶点是它的最低点,开口向上,并且向上无限伸展;当x=0时,函数y的值最小,最小值是0.二次函数y=x2的图象形如物体抛射时所经过的路线,我们把它叫做抛物线.抛物线y=x2与x轴有一个交点,是原点(0,0)(1)二次函数y=-x2的图象是什么形状?你能根据表格中的数据作出猜想吗?xy=-x2x…-3-2-10123…y=-x2x…-9-4-10-1-4-9…在学中做—在做中学(1)二次函数y=-x2的图象是什么形状?(2)先想一想,然后作出它的图象.(3)它与二次函数y=x2的图象有什么关系?xy=-x2x…-3-2-10123…y=-x2x…-9-4-10-1-4-9…做一做xy0-4-3-2-11234-10-8-6-4-22-1描点,连线y=-x2?2xy当x0(在对称轴的左侧)时,y随着x的增大而增大.当x0(在对称轴的右侧)时,y随着x的增大而减小.y当x=-2时,y=-4当x=-1时,y=-1当x=1时,y=-1当x=2时,y=-4抛物线y=-x2在x轴的下方(除顶点外),顶点是它的最高点,开口向下,并且向下无限伸展;当x=0时,函数y的值最大,最大值是0.2xy2xy二次函数y=±x2的性质2.顶点坐标与对称轴1.位置与开口方向3.增减性与最值抛物线顶点坐标对称轴位置开口方向增减性最值y=x2y=-x2(0,0)(0,0)y轴y轴在x轴的上方(除顶点外)在x轴的下方(除顶点外)向上向下当x=0时,最小值为0.当x=0时,最大值为0.在对称轴的左侧,y随着x的增大而减小.在对称轴的右侧,y随着x的增大而增大.在对称轴的左侧,y随着x的增大而增大.在对称轴的右侧,y随着x的增大而减小.根据图形填表:1.抛物线y=ax2的顶点是原点,对称轴是y轴.2.当a0时,抛物线y=ax2在x轴的上方(除顶点外),它的开口向上,并且向上无限伸展;当a0时,抛物线y=ax2在x轴的下方(除顶点外),它的开口向下,并且向下无限伸展.3.当a0时,在对称轴的左侧,y随着x的增大而减小;在对称轴右侧,y随着x的增大而增大.当x=0时函数y的值最小.当a0时,在对称轴的左侧,y随着x的增大而增大;在对称轴的右侧,y随着x增大而减小,当x=0时,函数y的值最大.二次函数y=ax2的性质2axy2axy做一做(1)抛物线y=2x2的顶点坐标是,对称轴是,在对称轴侧,y随着x的增大而增大;在对称轴侧,y随着x的增大而减小,当x=时,函数y的值最小,最小值是,抛物线y=2x2在x轴的方(除顶点外).(2)抛物线在x轴的方(除顶点外),在对称轴的左侧,y随着x的;在对称轴的右侧,y随着x的,当x=0时,函数y的值最大,最大值是,当x0时,y0.232xy(0,0)y轴右左00上下增大而增大增大而减小0不等于x…-4-3-2-101234…y=x2例1.在同一直角坐标系中画出函数y=x2和y=2x2的图象解:(1)列表(2)描点(3)连线12345x12345678910yo-1-2-3-4-5128…20.500.524.58…4.5122yx212yx22yxxy=2x28…………-2-1.5-1-0.500.511.524.520.500.524.5812345x12345678910yo-1-2-3-4-5函数y=x2,y=2x2的图象与函数y=x2(图中虚线图形)的图象相比,有什么共同点和不同点?12共同点:不同点:开口都向上;顶点是原点而且是抛物线的最低点,对称轴是y轴开口大小不同;2yx212yx22yx|a|越大,在对称轴的左侧,y随着x的增大而减小。在对称轴的右侧,y随着x的增大而增大。抛物线的开口越小。探究画出函数的图象.2222,21,xyxyxyx1y解:列表(2)描点(3)连线x…-2-1.5-1-0.500.511.52…y=-x2y=-x2y=-2x212………………-4-2.25-1-0.25000-0.25-1-2.25-4-2-2-8-8-2-2-0.5-0.5-0.5-0.5-1.125-1.125-0.125-0.125-4.5-4.5-1-2-30123-1-2-3-4-52xy221xy22xyx1y-1-2-30123-1-2-3-4-5函数y=-x2,y=-2x2的图象与函数y=-x2(图中蓝线图形)的图象相比,有什么共同点和不同点?12共同点:开口都向下;不同点:顶点是原点而且是抛物线的最高点,对称轴是y轴开口大小不同;|a|越大,221xy2xy22xy在对称轴的左侧,y随着x的增大而增大。在对称轴的右侧,y随着x的增大而减小。抛物线的开口越小.对比抛物线,y=x2和y=-x2.它们关于x轴对称吗?一般地,抛物线y=ax2和y=-ax2呢?在同一坐标系内,抛物线与抛物线是关于x轴对称的.2axy2axy2xy2xyy=ax2(a≠0)a0a0图象开口方向顶点坐标对称轴增减性极值xyOyxO向上向下(0,0)(0,0)y轴y轴当x0时,y随着x的增大而减小。当x0时,y随着x的增大而增大。x=0时,y最小=0x=0时,y最大=0抛物线y=ax2(a≠0)的形状是由|a|来确定的,一般说来,|a|越大,当x0时,y随着x的增大而增大。当x0时,y随着x的增大而减小。抛物线的开口就越小.|a|越小,抛物线的开口就越大.1.已知抛物线y=ax2经过点A(-2,-8).(1)求此抛物线的函数解析式;(2)判断点B(-1,-4)是否在此抛物线上.(3)求出此抛物线上纵坐标为-6的点的坐标.例题欣赏3分钟解(1)把(-2,-8)代入y=ax2,得-8=a(-2)2,解得a=-2,所求函数解析式为y=-2x2.(2)把x=-1代入,y=-2-4.所以点B不在抛物线上。(3)由-6=-2x2,得x2=3,所以纵坐标为-6的点有两个,它们分别是3x)6,3()6,3(与反馈测试1.抛物线y=4x2中的开口方向是,顶点坐标是,对称轴是.2.抛物线y=-14x2的开口方向是,顶点坐标是,对称轴是.3.二次函数y=ax2与y=2x2,开口大小,形状一样,开口方向相反,则a=.二次函数y=2x2+1的图象与二次函数y=2x2的图象开口方向、对称轴和顶点坐标是否相同?它们有什么关系?我们应该采取什么方法来研究这个问题?画出函数y=2x2和函数y=2x2+1的图象,并加以比较(1)二次函数y=2x²+1的图象与二次函数y=2x²的图象有什么关系?7654321-6-4-2246122xy22xyx…–1.5–1–0.500.511.5…y=2x2…4.520.500.524.5…y=2x2+1…5.531.511.535.5…(0,1)7654321-6-4-2246122xy22xyx…–1.5–1–0.500.511.5…y=2x2…4.520.500.524.5…y=2x2+1…5.531.511.535.5…(0,1)问题1:当自变量x取同一数值时,这两个函数的函数值之间有什么关系?反映在图象上,相应的两个点之
本文标题:一元二次函数
链接地址:https://www.777doc.com/doc-7351238 .html