您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 2020年高考数学考纲解读与热点难点突破专题05导数的热点问题
导数的热点问题【2020年高考考纲解读】利用导数探求函数的极值、最值是函数的基本问题,高考中常与函数零点、方程根及不等式相结合,难度较大.【题型示例】题型一、利用导数证明不等式用导数证明不等式是导数的应用之一,可以间接考查用导数判定函数的单调性或求函数的最值,以及构造函数解题的能力.例1、(2018·全国Ⅰ)已知函数f(x)=aex-lnx-1.(1)设x=2是f(x)的极值点,求a,并求f(x)的单调区间;(2)证明:当a≥1e时,f(x)≥0.(1)解f(x)的定义域为(0,+∞),f′(x)=aex-1x.由题设知,f′(2)=0,所以a=12e2.从而f(x)=12e2ex-lnx-1,f′(x)=12e2ex-1x.当0x2时,f′(x)0;当x2时,f′(x)0.所以f(x)的单调递增区间为(2,+∞),单调递减区间为(0,2).(2)证明当a≥1e时,f(x)≥exe-lnx-1.设g(x)=exe-lnx-1(x∈(0,+∞)),则g′(x)=exe-1x.当0x1时,g′(x)0;当x1时,g′(x)0.所以x=1是g(x)的最小值点.故当x0时,g(x)≥g(1)=0.因此,当a≥1e时,f(x)≥0.【方法技巧】用导数证明不等式的方法(1)利用单调性:若f(x)在[a,b]上是增函数,则①∀x∈[a,b],则f(a)≤f(x)≤f(b);②对∀x1,x2∈[a,b],且x1x2,则f(x1)f(x2).对于减函数有类似结论.(2)利用最值:若f(x)在某个范围D内有最大值M(或最小值m),则对∀x∈D,有f(x)≤M(或f(x)≥m).(3)证明f(x)g(x),可构造函数F(x)=f(x)-g(x),证明F(x)0.【变式探究】(2018·全国Ⅲ)已知函数f(x)=ax2+x-1ex.(1)求曲线y=f(x)在点(0,-1)处的切线方程;(2)证明:当a≥1时,f(x)+e≥0.题型二利用导数讨论方程根的个数方程的根、函数的零点、函数图象与x轴的交点的横坐标是三个等价的概念,解决这类问题可以通过函数的单调性、极值与最值,画出函数图象的走势,通过数形结合思想直观求解.例2、(2018·天津)设函数f(x)=(x-t1)·(x-t2)(x-t3),其中t1,t2,t3∈R,且t1,t2,t3是公差为d的等差数列.(1)若t2=0,d=1,求曲线y=f(x)在点(0,f(0))处的切线方程;(2)若d=3,求f(x)的极值;(3)若曲线y=f(x)与直线y=-(x-t2)-63有三个互异的公共点,求d的取值范围.解(1)由已知,可得f(x)=x(x-1)(x+1)=x3-x,故f′(x)=3x2-1.因此f(0)=0,f′(0)=-1.又因为曲线y=f(x)在点(0,f(0))处的切线方程为y-f(0)=f′(0)(x-0),故所求切线方程为x+y=0.(2)由已知可得f(x)=(x-t2+3)(x-t2)(x-t2-3)=(x-t2)3-9(x-t2)=x3-3t2x2+(3t22-9)x-t32+9t2.故f′(x)=3x2-6t2x+3t22-9.令f′(x)=0,解得x=t2-3或x=t2+3.当x变化时,f′(x),f(x)的变化情况如下表:x(-∞,t2-3)t2-3(t2-3,t2+3)t2+3(t2+3,+∞)f′(x)+0-0+f(x)↗极大值↘极小值↗所以函数f(x)的极大值为f(t2-3)=(-3)3-9×(-3)=63,函数f(x)的极小值为f(t2+3)=(3)3-9×3=-63.(3)曲线y=f(x)与直线y=-(x-t2)-63有三个互异的公共点等价于关于x的方程(x-t2+d)(x-t2)·(x-t2-d)+(x-t2)+63=0有三个互异的实数解.令u=x-t2,可得u3+(1-d2)u+63=0.设函数g(x)=x3+(1-d2)x+63,则曲线y=f(x)与直线y=-(x-t2)-63有三个互异的公共点等价于函数y=g(x)有三个零点.g′(x)=3x2+(1-d2).当d2≤1时,g′(x)≥0,这时g(x)在R上单调递增,不合题意.当d21时,令g′(x)=0,解得x1=-d2-13,x2=d2-13.可得g(x)在(-∞,x1)上单调递增,在[x1,x2]上单调递减,在(x2,+∞)上单调递增.所以g(x)的极大值为g(x1)=g-d2-13=23d2-329+630.g(x)的极小值为g(x2)=gd2-13=-23d2-329+63.若g(x2)≥0,则由g(x)的单调性可知函数y=g(x)至多有两个零点,不合题意.若g(x2)0,即(d2-1)3227,也就是|d|10,此时|d|x2,g(|d|)=|d|+630,且-2|d|x1,g(-2|d|)=-6|d|3-2|d|+63-6210+630,从而由g(x)的单调性,可知函数y=g(x)在区间(-2|d|,x1),(x1,x2),(x2,|d|)内各有一个零点,符合题意.所以d的取值范围是(-∞,-10)∪(10,+∞).【感悟提升】(1)函数y=f(x)-k的零点问题,可转化为函数y=f(x)和直线y=k的交点问题.(2)研究函数y=f(x)的值域,不仅要看最值,而且要观察随x值的变化y值的变化趋势.【变式探究】设函数f(x)=(x-1)ex-k2x2.(1)当k1时,求函数f(x)的单调区间;(2)当k≤0时,讨论函数f(x)的零点个数.(2)f(0)=-1,①当k0时,f(1)=-k20,又f(x)在[0,+∞)上单调递增,所以函数f(x)在[0,+∞)上只有一个零点.在区间(-∞,0)中,因为f(x)=(x-1)ex-k2x2x-1-k2x2,取x=2k-1∈(-∞,0),于是f2k-12k-1-1-k22k-12=-k20,又f(x)在(-∞,0)上单调递减,故f(x)在(-∞,0)上也只有一个零点,所以函数f(x)在定义域(-∞,+∞)上有两个零点;②当k=0时,f(x)=(x-1)ex在单调递增区间[0,+∞)内,只有f(1)=0.而在区间(-∞,0)内,f(x)0,即f(x)在此区间内无零点.所以函数f(x)在定义域(-∞,+∞)上只有唯一的零点.综上所述,当k0时,函数f(x)有两个零点,当k=0时,f(x)只有一个零点.题型三利用导数解决生活中的优化问题生活中的实际问题受某些主要变量的制约,解决生活中的优化问题就是把制约问题的主要变量找出来,建立目标问题即关于这个变量的函数,然后通过研究这个函数的性质,从而找到变量在什么情况下可以达到目标最优.例3、罗源滨海新城建一座桥,两端的桥墩已建好,这两墩相距m米,余下工程只需建两端桥墩之间的桥面和桥墩,经预测,一个桥墩的工程费用为32万元,距离为x米的相邻两墩之间的桥面工程费用为(2+x)x万元.假设桥墩等距离分布,所有桥墩都视为点,且不考虑其他因素,记余下工程的费用为y万元.(1)试写出y关于x的函数关系式;(2)当m=96米时,需新建多少个桥墩才能使余下工程的费用y最小?解(1)设需新建n个桥墩,则(n+1)x=m,即n=mx-1.所以y=f(x)=32n+(n+1)(2+x)x=32mx-1+mx(2+x)x=m32x+x+2m-32(0xm).(2)当m=96时,f(x)=9632x+x+160,则f′(x)=9612x-32x2=48x2(32x-64).令f′(x)=0,得32x=64,所以x=16.当0x16时,f′(x)0,f(x)在区间(0,16)内为减函数;当16x96时,f′(x)0,f(x)在区间(16,96)内为增函数,所以f(x)在x=16处取得最小值,此时n=9616-1=5.答需新建5个桥墩才能使余下工程的费用y最小.【感悟提升】利用导数解决生活中的优化问题的一般步骤(1)建模:分析实际问题中各量之间的关系,列出实际问题的数学模型,写出实际问题中变量之间的函数关系式y=f(x).(2)求导:求函数的导数f′(x),解方程f′(x)=0.(3)求最值:比较函数在区间端点和使f′(x)=0的点的函数值的大小,最大(小)者为最大(小)值.(4)作答:回归实际问题作答.【变式探究】图1是某种称为“凹槽”的机械部件的示意图,图2是凹槽的横截面(阴影部分)示意图,其中四边形ABCD是矩形,弧CmD是半圆,凹槽的横截面的周长为4.若凹槽的强度T等于横截面的面积S与边AB的乘积,设AB=2x,BC=y.(1)写出y关于x的函数表达式,并指出x的取值范围;(2)求当x取何值时,凹槽的强度最大.解(1)易知半圆CmD的半径为x,故半圆CmD的弧长为πx.所以4=2x+2y+πx,得y=4-+x2.依题意知0xy,得0x44+π.所以y=4-+x20x44+π.(2)依题意,得T=AB·S=2x2xy-12πx2=8x2-(4+3π)x3.令T′=16x-3(4+3π)x2=0,得x=0或x=169π+12.因为0169π+124π+4,所以当0x169π+12时,T′0,T为关于x的增函数;当169π+12x44+π时,T′0,T为关于x的减函数,所以当x=169π+12时凹槽的强度最大.
本文标题:2020年高考数学考纲解读与热点难点突破专题05导数的热点问题
链接地址:https://www.777doc.com/doc-7369675 .html