您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 资本运营 > 中考必会几何模型截长补短辅助线模型
截长补短辅助线模型模型:截长补短如图①,若证明线段AB、CD、EF之间存在EF=AB+CD,可以考虑截长补短法.截长法:如图②,在EF上截取EG=AB,再证明GF=CD即可.补短法:如图③,延长AB至H点,使BH=CD,再证明AH=EF即可.模型分析截长补短的方法适用于求证线段的和差倍分关系.截长,指在长线端中截取一段等于已知的线段;补短,指将一条短线端延长,延长部分等于已知线段.该类题目中常出现等腰三角形、角平分线等关键词句,可以采用截长补短法构造全等三角形来完成证明过程.模型实例例1:如图,已知在△ABC中,∠C=2∠B,∠1=∠2.求证:AB=AC+CD.证法一,截长法:如图①,在AB上取一点E,使AE=AC,连接DE.∵AE=AC,∠1=∠2,AD=AD,∴△ACD≌△AED,∴CD=DE,∠C=∠3.∵∠C=2∠B,∴∠3=2∠B=∠4+∠B,∴∠4=∠B,∴DE=BE,∴CD=BE.∵AB=AE+BE,∴AB=AC+CD.证法二,补短法:如图②,延长AC到点E,使CE=CD,连接DE.∵CE=CD,∴∠4=∠E.∵∠3=∠4+∠E,∴∠3=2∠E.∵∠3=2∠B,∴∠E=∠B.∵∠1=∠2,AD=AD,∴△EAD≌△BAD,∴AE=AB.又∵AE=AC+CE,∴∴AB=AC+CD.例2:如图,已知OD平分∠AOB,DC⊥OA于点C,∠A=∠GBD.求证:AO+BO=2CO.证明:在线段AO上取一点E,使CE=AC,连接DE.∵CD=CD,DC⊥OA,∴△ACD≌△ECD,∴∠A=∠CED.∵∠A=∠GBD,∴∠CED=∠GBD,∴1800-∠CED=1800-∠GBD,∴∠OED=∠OBD.∵OD平分∠AOB,∴∠AOD=∠BOD.∵OD=OD,∴△OED≌△OBD,∴OB=OE,∴AO+BO=AO+OE=OE+2CE+OE=OE+CE+OE+CE=2(CE+OE)=2CO.跟踪练习1.如图,在△ABC中,∠BAC=600,AD是∠BAC的平分线,且AC=AB+BD.求∠ABC的度数.【答案】证法一:补短延长AB到点E,使BE=BD.在△BDE中,∵BE=BD,∴∠E=∠BDE,∴∠ABC=∠BDE+∠E=2∠E.又∵AC=AB+BD,∴AC=AB+BE,∴AC=AE.∵AD是∠BAC的平分线,∠BAC=600,∴∠EAD=∠CAD=600÷2=300.∵AD=AD,∴△AED≌△ACD,∴∠E=∠C.∵∠ABC=2∠E,∴∠ABC=2∠C.∵∠BAC=600,∴∠ABC+∠C=1800-600=1200,∴32∠ABC=1200,∴∠ABC=800.证法二:在AC上取一点F,使AF=AB,连接DF.∵AD是∠BAC的平分线,∴∠BAD=∠FAD.∵AD=AD,∴△BAD≌△FAD,∴∠B=∠AFD,BD=FD.∵AC=AB+BD,AC=AF+FC∴FD=FC,∴∠FDC=∠C.∵∠AFD=∠FDC+∠C,∴∠B=∠FDC+∠C=2∠C.∵∠BAC+∠B+∠C=1800,∴32∠ABC=1200,∴∠ABC=800.2.如图,在△ABC中,∠ABC=600,AD、CE分别平分∠BAC、∠ACB.求证:AC=AE+CD.【答案】如图,在AC边上取点F,使AE=AF,连接OF.∵∠ABC=600,∴∠BAC+∠ACB=1800-∠ABC=1200.∵AD、CE分别平分∠BAC、∠ACB,∴∠OAC=∠OAB=2BACÐ,∠OCA=∠OCB=2ACBÐ,∴∠AOE=∠COD=∠OAC+∠OCA=2BACACB??=600,∴∠AOC=1800-∠AOE=1200.∵AE=AF,∠EAO=∠FAO,AO=AO,∴△AOE≌△AOF(SAS),∴∠AOF=∠AOE=600,∴∠COF=∠AOC-∠AOF=600,∴∠COF=∠COD.∵CO=CO,CE平分∠ACB,∴△COD≌△COF(ASA),∴CD=CF.∵AC=AF+CF,∴AC=AE+CD,3.如图,∠ABC+∠BCD=1800,BE、CE分别平分∠ABC、∠DCB.求证:AB+CD=BC.【答案】证法一:截长如图①,在BC上取一点F,使BF=AB,连接EF.∵∠1=∠ABE,BE=BE,∴△ABE≌△FBE,∴∠3=∠4.∵∠ABC+∠BCD=1800,BE、CE分别平分∠ABC、∠DCB,∴∠1+∠2=12∠ABC+12∠DCB=12×1800=900,∴∠BEC=900,∴∠4+∠5=900,∠3+∠6=900.∵∠3=∠4,∴∠5=∠6.∵CE=CE,∠2=∠DCE,∴△CEF≌△CED,∴CF=CD.∵BC=BF+CF,AB=BF,∴AB+CD=BC证法二:补短如图②,延长BA到点F,使BF=BC,连接EF.∵∠1=∠ABE,BE=BE,∴△BEF≌△BEC,∴EF=EC,∠BEC=∠BEF.∵∠ABC+∠BCD=1800,BE、CE分别平分∠ABC、∠DCB,∴∠1+∠2=12∠ABC+12∠DCB=12×1800=900,∴∠BEC=900,∴∠BEF=∠BEC=900,∴∠BEF+∠BEC=1800,∴C、E、F三点共线.∵AB∥CD,∴∠F=∠FCD.∵EF=EC,∠FEA=∠DEC,∴△AEF≌△DEC,∴AF=CD.∵BF=AB+AF,∴BC=AB+CD.4.如图,在△ABC中,∠ABC=900,AD平分∠BAC交BC于D,∠C=300,BE⊥AD于点E.求证:AC-AB=2BE.【答案】延长BE交AC于点M.∵BE⊥AD,∴∠AEB=∠AEM=900.∵∠3=900-∠1,∠4=900-∠2,∠1=∠2,∴∠3=∠4,∴AB=AM.∵BE⊥AE,∴BM=2BE.∵∠ABC=900,∠C=300,∴∠BAC=600.∵AB=AM,∴∠3=∠4=600,∴∠5=900-∠3=300,∴∠5=∠C,∴CM=BM,∴AC-AB=CM=BM=2BE.5.如图,Rt△ACB中,A=BC,AD平分∠BAC交BC于点D,CE⊥AD交AD于点F,交AB于点E.求证:AD=2DF+CE.【答案】在AD上取一点G,使AG=CE,连接CG.∵CE⊥AD,∴∠AFC=900,∠1+∠ACF=900.∵∠2+∠ACF=900,∴∠1=∠2.∵AC=BC,AG=CE,∴△ACG≌△CBE,∴∠3=∠B=450,∴∠2+∠4=900-∠3=450.∵∠2=∠1=12∠BAC=22.50,∴∠4=450-∠2=22.50,∴∠4=∠2=22.50.又∵CF=CF,DG⊥CF,∴△CDF≌△CGF,∴DF=GF.∵AD=AG+DG,∴AD=CE+2DF.6.如图,五边形ABCDE中,AB=AE,BC+DE=CD,∠B+∠E=1800.求证:AD平分∠CDE.【答案】如图,延长CB到点F,使BF=DE,连接AF、AC.∵∠1+∠2=1800,∠E+∠1=1800,∴∠2=∠E.∵AB=AE,∠2=∠E,BF=DE,∴△ABF≌△AED,∴∠F=∠4,AF=AD.∵BC+DE=CD,∴BC+BF=CD,即FC=CD.又∵AC=AC,∴△ACF≌△ACD,∴∠F=∠3.∵∠F=∠4,∴∠3=∠4,∴AD平分∠CDE.
本文标题:中考必会几何模型截长补短辅助线模型
链接地址:https://www.777doc.com/doc-7370726 .html