您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 第12讲反比例函数教师版备战2020中考数学专题复习分项提升
第12讲反比例函数反比例函数解析式的确定(1)确定方法:待定系数法;(2)一般步骤:①设所求的反比例函数解析式为y=kx(k≠0);②根据已知条件,得到反比例函数图象上一点P(a,b);③将点P(a,b)代入反比例函数的解析式得到关于系数k的方程;④解方程得待定系数k的值;⑤把k的值代入y=kx即可得反比例函数解析式考点1:反比例函数的图像与性质【例题1】如图,四边形ABCD是平行四边形,点A(1,0),B(3,1),C(3,3).反比例函数y=mx(x>0)的图象经过点D,点P是一次函数y=kx+3-3k(k≠0)的图象与该反比例函数图象的一个公共点.(1)求反比例函数的解析式;(2)通过计算,说明一次函数y=kx+3-3k(k≠0)的图象一定经过点C;(3)对于一次函数y=kx+3-3k(k≠0),当y随x的增大而增大时,确定点P横坐标的取值范围.(不必写出过程)【解析】:(1)∵B(3,1),C(3,3),四边形ABCD是平行四边形,∴AD=BC=2,BC⊥x轴.∴AD⊥x轴.又∵A(1,0),∴D(1,2).∵D在反比例函数y=mx的图象上,∴m=1×2=2.∴反比例函数的解析式为y=2x.(2)当x=3时,y=kx+3-3k=3,∴一次函数y=kx+3-3k(k≠0)的图象一定过点C.(3)设点P的横坐标为a,则23<a<3.归纳:反比例函数中,y随x的大小变化的情况,应分x>0与x<0两种情况讨论,而不能笼统地说成“k<0时,y随x的增大而增大”.双曲线上的点在每个象限内,y随x的变化是一致的.运用反比例函数的性质时,要注意在每一个象限内的要求.考点2:反比例函数与一次函数的综合【例题2】如图,在平面直角坐标系中,反比例函数y=kx(x>0)的图象与边长是6的正方形OABC的两边AB,BC分别相交于M,N两点.(1)若点M是AB边的中点,求反比例函数y=kx的解析式和点N的坐标;(2)若AM=2,求直线MN的解析式及△OMN的面积.【点拨】(1)由已知可知点M的坐标,求出k的值,从而求出点N的坐标;(2)确定点M,点N的坐标,三角形面积就可求出.【解答】解:(1)∵点M是AB边的中点,∴M(6,3).∵反比例函数y=kx经过点M,∴3=k6.∴k=18.∴反比例函数的解析式为y=18x.当y=6时,x=3,∴N(3,6).(2)由题意,知M(6,2),N(2,6).设直线MN的解析式为y=ax+b,则2=6a+b,6=2a+b,解得a=-1,b=8.∴直线MN的解析式为y=-x+8.∴S△OMN=S正方形OABC-S△OAM-S△OCN-S△BMN=36-6-6-8=16.【变式】在例2中,若△OMN的面积为10,求点M,N的坐标.解:∵OA=OC=6,设M(6,y),则N(y,6).∴BM=BN=6-y.∵S△OMN=10,∴36-12×6×y×2-12(6-y)2=10,即y2=16.又∵y0,∴y=4,∴M(6,4).∴N(4,6).归纳:1.确定反比例函数解析式只要一个合适的条件(如图象上一个点的坐标)即可.另外将已知点的坐标或部分坐标代入解析式中,从而确定字母的值是我们经常用的方法.2.双曲线y=kx中,根据k的几何意义求图形面积常用图形有:S阴影=|k|S阴影=|k|2S阴影=|k|3.第一象限内的双曲线本身是轴对称图形,正方形也是轴对称图形,所以在本题中,图形是关于直线y=x的轴对称图形,对解答第(2)问提供解题思路.考点3:反比例函数的实际应用【例题3】(2018·乐山)某蔬菜生产基地的气温较低时,用装有恒温系统的大棚栽培一种新品种蔬菜.如图是试验阶段的某天恒温系统从开启到关闭后,大棚内的温度y(℃)与时间x(h)之间的函数关系,其中线段AB,BC表示恒温系统开启阶段,双曲线的一部分CD表示恒温系统关闭阶段.请根据图中信息解答下列问题:(1)求这天的温度y与时间x(0≤x≤24)的函数关系式;(2)求恒温系统设定的恒定温度;(3)若大棚内的温度低于10℃时,蔬菜会受到伤害.问这天内,恒温系统最多可以关闭多少小时,才能使蔬菜避免受到伤害?【点拨】(1)用待定系数法分段求函数解析式;(2)观察图象可得;(3)代入临界值y=10即可.【解答】解:(1)设线段AB解析式为y=k1x+b(k≠0),∵线段AB过点(0,10),(2,14),代入,得b=10,2k1+b=14,解得k1=2,b=10.∴AB解析式为y=2x+10(0≤x<5).∵B在线段AB上,当x=5时,y=20.∴B坐标为(5,20).∴线段BC的解析式为y=20(5≤x<10).设双曲线CD的解析式为y=k2x(k2≠0).∵C(10,20),∴k2=200.∴双曲线CD解析式为y=200x(10≤x≤24).∴y关于x的函数解析式为y=2x+10(0≤x5),20(5≤x10),200x(10≤x≤24).(2)由(1)可知,恒温系统设定恒定温度为20℃.(3)把y=10代入y=200x中,解得x=20.∴20-10=10.答:恒温系统最多关闭10小时,蔬菜才能避免受到伤害.归纳:反比例函数实际应用题是近年中考常见的题型,解题时首先要仔细审读题目(或图象)中给予的信息,挖掘题目(或图象)中隐含的条件,提取有用信息,综合运用所学知识解决问题.一、选择题:1.(2018•柳州)已知反比例函数的解析式为y=,则a的取值范围是()A.a≠2B.a≠﹣2C.a≠±2D.a=±2【答案】C解析:可得:|a|﹣2≠0,解得:a≠±2,故选:C.2.(2019安徽)(4分)已知点A(1,﹣3)关于x轴的对称点A'在反比例函数y=kx的图象上,则实数k的值为()A.3B.13C.﹣3D.﹣13【答案】A【解答】解:点A(1,﹣3)关于x轴的对称点A'的坐标为(1,3),把A′(1,3)代入y=kx得k=1×3=3.故选:A.3.(2018•德州)给出下列函数:①y=﹣3x+2;②y=;③y=2x2;④y=3x,上述函数中符合条作“当x>1时,函数值y随自变量x增大而增大“的是()A.①③B.③④C.②④D.②③【答案】B【解析】:①y=﹣3x+2,当x>1时,函数值y随自变量x增大而减小,故此选项错误;②y=,当x>1时,函数值y随自变量x增大而减小,故此选项错误;③y=2x2,当x>1时,函数值y随自变量x增大而减小,故此选项正确;④y=3x,当x>1时,函数值y随自变量x增大而减小,故此选项正确;故选:B.4.(2018•聊城)春季是传染病多发的季节,积极预防传染病是学校高度重视的一项工作,为此,某校对学生宿舍采取喷洒药物进行消毒.在对某宿舍进行消毒的过程中,先经过5min的集中药物喷洒,再封闭宿舍10min,然后打开门窗进行通风,室内每立方米空气中含药量y(mg/m3)与药物在空气中的持续时间x(min)之间的函数关系,在打开门窗通风前分别满足两个一次函数,在通风后又成反比例,如图所示.下面四个选项中错误的是()A.经过5min集中喷洒药物,室内空气中的含药量最高达到10mg/m3B.室内空气中的含药量不低于8mg/m3的持续时间达到了11minC.当室内空气中的含药量不低于5mg/m3且持续时间不低于35分钟,才能有效杀灭某种传染病毒.此次消毒完全有效D.当室内空气中的含药量低于2mg/m3时,对人体才是安全的,所以从室内空气中的含药量达到2mg/m3开始,需经过59min后,学生才能进入室内【答案】C【解答】解:A、正确.不符合题意.B、由题意x=4时,y=8,∴室内空气中的含药量不低于8mg/m3的持续时间达到了11min,正确,不符合题意;C、y=5时,x=2.5或24,24﹣2.5=21.5<35,故本选项错误,符合题意;D、正确.不符合题意,故选:C.5.(2018•遵义)如图,直角三角形的直角顶点在坐标原点,∠OAB=30°,若点A在反比例函数y=(x>0)的图象上,则经过点B的反比例函数解析式为()A.y=﹣B.y=﹣C.y=﹣D.y=【答案】C解析:点B作BC⊥x轴于点C,过点A作AD⊥x轴于点D,∵∠BOA=90°,∴∠BOC+∠AOD=90°,∵∠AOD+∠OAD=90°,∴∠BOC=∠OAD,又∵∠BCO=∠ADO=90°,∴△BCO∽△ODA,∴=tan30°=,∴=,∵×AD×DO=xy=3,∴S△BCO=×BC×CO=S△AOD=1,∴S△AOD=2,∵经过点B的反比例函数图象在第二象限,故反比例函数解析式为:y=﹣.故选:C.二、填空题:6.(2018·四川宜宾·3分)已知:点P(m,n)在直线y=﹣x+2上,也在双曲线y=﹣上,则m2+n2的值为6【答案】6【解答】解:∵点P(m,n)在直线y=﹣x+2上,∴n+m=2,∵点P(m,n)在双曲线y=﹣上,∴mn=﹣1,∴m2+n2=(n+m)2﹣2mn=4+2=6.故答案为:6.7.(2019•浙江绍兴•5分)如图,矩形ABCD的顶点A,C都在曲线y=(常数是>0,x>0)上,若顶点D的坐标为(5,3),则直线BD的函数表达式是y=x.【答案】y=35x.【解答】解:∵D(5,3),∴A(3k,3),C(5,5k),∴B(3k,5k),设直线BD的解析式为y=mx+n,把D(5,3),B(3k,5k)代入得,解得,∴直线BD的解析式为y=35x.故答案为y=35x.8.(2018•安顺)如图,已知直线y=k1x+b与x轴、y轴相交于P、Q两点,与y=的图象相交于A(﹣2,m)、B(1,n)两点,连接OA、OB,给出下列结论:①k1k2<0;②m+n=0;③S△AOP=S△BOQ;④不等式k1x+b的解集是x<﹣2或0<x<1,其中正确的结论的序号是【答案】②③④.【解答】解:由图象知,k1<0,k2<0,∴k1k2>0,故①错误;把A(﹣2,m)、B(1,n)代入y=中得﹣2m=n,∴m+n=0,故②正确;把A(﹣2,m)、B(1,n)代入y=k1x+b得,∴,∵﹣2m=n,∴y=﹣mx﹣m,∵已知直线y=k1x+b与x轴、y轴相交于P、Q两点,∴P(﹣1,0),Q(0,﹣m),∴OP=1,OQ=m,∴S△AOP=m,S△BOQ=m,∴S△AOP=S△BOQ;故③正确;由图象知不等式k1x+b的解集是x<﹣2或0<x<1,故④正确;故答案为:②③④.9.(2019▪贵州毕节▪5分)如图,在平面直角坐标中,一次函数y=﹣4x+4的图象与x轴、y轴分别交于A.B两点.正方形ABCD的顶点C.D在第一象限,顶点D在反比例函数y=kx(k≠0)的图象上.若正方形ABCD向左平移n个单位后,顶点C恰好落在反比例函数的图象上,则n的值是.【答案】3【解答】解:过点D作DE⊥x轴,过点C作CF⊥y轴,∵AB⊥AD,∴∠BAO=∠DAE,∵AB=AD,∠BOA=∠DEA,∴△ABO≌△DAE(AAS),∴AE=BO,DE=OA,易求A(1,0),B(0,4),∴D(5,1),∵顶点D在反比例函数y=kx上,∴k=5,∴y=5x,易证△CBF≌△BAO(AAS),∴CF=4,BF=1,∴C(4,5),∵C向左移动n个单位后为(4﹣n,5),∴5(4﹣n)=5,∴n=3,故答案为3;三、解答题:10.甲、乙两家商场进行促销活动,甲商场采用“满200减100”的促销方式,即购买商品的总金额满200元但不足400元,少付100元;满400元但不足600元,少付200元……乙商场按顾客购买商品的总金额打6折促销.(1)若顾客在甲商场购买了510元的商品,付款时应付多少钱?(2)若顾客在甲商场购买商品的总金额为x(400≤x<600)元,优惠后得到商家的优惠率为p(p=优惠金额购买商品的总金额),写出p与x之间的函数关系式,并说明p随x的变化情况;(3)品牌、质量、规格等都相同的某种商品,在甲、乙两商场的标价都是x(200≤x<400)元,你认为选择哪家商场购买商品花钱较少?请说明理由.【解析】:(1)510-200=3
本文标题:第12讲反比例函数教师版备战2020中考数学专题复习分项提升
链接地址:https://www.777doc.com/doc-7371738 .html