您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 第19讲平行四边形含多边形学生版备战2020中考数学专题复习分项提升
第19讲平行四边形(含多边形)1.平行四边形(1)性质:①平行四边形两组对边分别____;②平行四边形对角相等,邻角____;③平行四边形对角线互相___;④平行四边形是____对称图形.(2)判定方法:①定义:两组对边平行且相等的四边形是平行四边形;②两组对边分别__相等__的四边形是平行四边形;③一组对边的四边形是平行四边形;④两组对角的四边形是平行四边形;⑤对角线互相平分的四边形是平行四边形.2.多边形及其性质(1)多边形:①内角和定理:n边形的内角和等于;②外角和定理:n边形的外角和为;③对角线:过n边形的一个顶点可引n-3条对角线,n边形共有条对角线.(2)正多边形:①正多边形各边相等,各内角相等,各外角相等;②正n边形的每一个内角为(n-2)180°n(n≥3),每一个外角为360°n;③对称性:所有的正多边形都是轴对称图形,正n边形有_n__条对称轴;当n是奇数时,是轴对称图形,不是中心对称图形;当n是偶数时,既是轴对称图形又是中心对称图形.考点1:多边形内角和计算【例题1】在一个多边形中,一个内角相邻的外角与其他各内角的和为600°.(1)如果这个多边形是五边形,请求出这个外角的度数;(2)是否存在符合题意的其他多边形?如果存在,请求出边数及这个外角的度数;如果不存在,请说明理由.归纳:本题注意隐含条件的挖掘,即邻补角和为180°及凸多边形的一个内角是小于平角的角.考点2:平行四边形的性质与判定【例题2】(2017·大庆)如图,以BC为底边的等腰△ABC,点D,E,G分别在BC,AB,AC上,且EG∥BC,DE∥AC,延长GE至点F,使得BE=BF.(1)求证:四边形BDEF为平行四边形;(2)当∠C=45°,BD=2时,求D,F两点间的距离.考点3:关于平行四边形的综合探究问题【例题3】(2018四川省眉山市15分)如图①,在四边形ABCD中,AC⊥BD于点E,AB=AC=BD,点M为BC中点,N为线段AM上的点,且MB=MN.(1)求证:BN平分∠ABE;(2)若BD=1,连结DN,当四边形DNBC为平行四边形时,求线段BC的长;(3)如图②,若点F为AB的中点,连结FN、FM,求证:△MFN∽△BDC.一、选择题:1.(2018·浙江宁波·4分)已知正多边形的一个外角等于40°,那么这个正多边形的边数为()A.6B.7C.8D.92.在平行四边形ABCD中,∠B=60°,那么下列各式中,不能成立的是()A.∠D=60°B.∠A=120°C.∠C+∠D=180°D.∠C+∠A=180°3.(2018•宁波)如图,在▱ABCD中,对角线AC与BD相交于点O,E是边CD的中点,连结OE.若∠ABC=60°,∠BAC=80°,则∠1的度数为()A.50°B.40°C.30°D.20°4.(2018·浙江省台州·4分)如图,在▱ABCD中,AB=2,BC=3.以点C为圆心,适当长为半径画弧,交BC于点P,交CD于点Q,再分别以点P,Q为圆心,大于PQ的长为半径画弧,两弧相交于点N,射线CN交BA的延长线于点E,则AE的长是()A.B.1C.D.5.(2018•陕西•3分)点O是平行四边形ABCD的对称中心,AD>AB,E.F分别是AB边上的点,且EF=AB;G、H分别是BC边上的点,且GH=BC;若S1,S2分别表示∆EOF和∆GOH的面积,则S1,S2之间的等量关系是().二、填空题:6.(2018·湖南省衡阳·3分)如图,▱ABCD的对角线相交于点O,且AD≠CD,过点O作OM⊥AC,交AD于点M.如果△CDM的周长为8,那么▱ABCD的周长是.7.(2018•十堰)如图,已知▱ABCD的对角线AC,BD交于点O,且AC=8,BD=10,AB=5,则△OCD的周长为.8.(2018•株洲市•3分)如图,在平行四边形ABCD中,连接BD,且BD=CD,过点A作AM⊥BD于点M,过点D作DN⊥AB于点N,且DN=,在DB的延长线上取一点P,满足∠ABD=∠MAP+∠PAB,则AP=_____.9.(2018•无锡)如图,已知∠XOY=60°,点A在边OX上,OA=2.过点A作AC⊥OY于点C,以AC为一边在∠XOY内作等边三角形ABC,点P是△ABC围成的区域(包括各边)内的一点,过点P作PD∥OY交OX于点D,作PE∥OX交OY于点E.设OD=a,OE=b,则a+2b的取值范围是.三、解答题:10.已知n边形的内角和θ=(n-2)×180°.(1)甲同学说,θ能取360°;而乙同学说,θ也能取630°.甲、乙的说法对吗?若对,求出边数n;若不对,说明理由;(2)若n边形变为(n+x)边形,发现内角和增加了360°,用列方程的方法确定x.11.(2017·河北模拟)看图回答问题:(1)内角和为2018°,佳佳为什么说不可能?(2)音音求的是几边形的内角和?12.如图,在▱ABCD中,E,F在对角线AC上.(1)若BE,DF分别是△ABO,△CDO的中线,求证:四边形BEDF是平行四边形;(2)若BE,DF分别是△ABO,△CDO的角平分线,四边形BEDF还是平行四边形吗?若BE,DF分别是△ABO,△CDO的高线时,四边形BEDF还是平行四边形吗?13.正方形ABCD的边长是5,点M是直线AD上一点,连接BM,将线段BM绕点M逆时针旋转90°得到线段ME,在直线AB上取点F,使AF=AM,且点F与点E在AD同侧,连接EF,DF.(1)如图1,当点M在DA延长线上时,求证:△ADF≌△ABM;(2)如图2,当点M在线段AD上时,求证:四边形DFEM是平行四边形;(3)在(2)的条件下,线段AM与线段AD有什么数量关系时,四边形EFDM的面积最大?并求出这个面积的最大值.图1图214.正方形ABCD的边长是5,点M是直线AD上一点,连接BM,将线段BM绕点M逆时针旋转90°得到线段ME,在直线AB上取点F,使AF=AM,且点F与点E在AD同侧,连接EF,DF.(1)如图1,当点M在DA延长线上时,求证:△ADF≌△ABM;(2)如图2,当点M在线段AD上时,求证:四边形DFEM是平行四边形;(3)在(2)的条件下,线段AM与线段AD有什么数量关系时,四边形EFDM的面积最大?并求出这个面积的最大值.图1图2
本文标题:第19讲平行四边形含多边形学生版备战2020中考数学专题复习分项提升
链接地址:https://www.777doc.com/doc-7371747 .html