您好,欢迎访问三七文档
当前位置:首页 > 幼儿/小学教育 > 小学教育 > 小升初数学总复习同步拓展第十九讲行程问题二不含答案全国通用
行程问题(二)【知识、方法梳理】行程问题的三个基本量是距离、速度和时间。其互逆关系可用乘、除法计算,方法简单,但应注意行驶方向的变化,按所行方向的不同可分为三种:(1)相遇问题;(2)相离问题;(3)追及问题。行程问题的主要数量关系是:距离=速度×时间。它大致分为以下三种情况:(1)相向而行:相遇时间=距离÷速度和(2)相背而行:相背距离=速度和×时间。(3)同向而行:速度慢的在前,快的在后。追及时间=追及距离÷速度差在环形跑道上,速度快的在前,慢的在后。追及距离=速度差×时间。解决行程问题时,要注意充分利用图示把题中的情节形象地表示出来,有助于分析数量关系,有助于迅速地找到解题思路。【典例精讲】例题1:一个游泳池长90米。甲、乙二人分别从游泳池的两端同时出发,游到另一端立即返回。找这样往、返游,两人游10分钟。已知甲每秒游3米,乙每秒游2米。在出发后的两分钟内,二人相遇了几次?设甲的速度为a,乙的速度为b,a:b的最简比为m:n,那么甲、乙在半个周期内共走m+n个全程。若m>n,且m、n都是奇数,在一个周期内甲、乙相遇了2m次;若m>n,且m为奇数(或偶数),n为偶数(或奇数),在半个周期末甲、乙同时在乙(或甲)的出发位置,一个周期内,甲、乙共相遇(2m—1)次。甲速:乙速=3:2,由于3>2,且一奇数一偶数,一个周期内共相遇(2×3—1=)5次,共跑了[(3+2)×2=]10个全程。10分钟两人合跑周期的个数为:60×10÷[90÷(2+3)×10]=313(个)3个周期相遇(5×3=)15(次);13个周期相遇2次。一共相遇:15+2=17(次)答:二人相遇了17次。练习1:1、甲、乙两个运动员同时从游泳池的两端相向下水做往、返游泳训练。从池的一端到另一端甲要3分钟,乙要3.2分钟。两人下水后连续游了48分钟,一共相遇了多少次?2、一游泳池道长100米,甲、乙两个运动员从泳道的两端同时下水,做往、返训练15分钟,甲每分钟游81米,乙每分钟游89米。甲运动员一共从乙运动员身边经过了多少次?3、马路上有一辆身长为15米的公共汽车,由东向西行驶,车速为每小时18千米。马路一旁人行道上有甲、乙两名年轻人正在练长跑,甲由东向西跑,乙由西向东跑。某一时刻,汽车追上了甲,6秒争后汽车离开了甲,半分钟后,汽车遇到迎面跑来的乙,又经过了2秒钟,汽车离开乙,再过几秒钟,甲、乙两人相遇?例题2:甲、乙两地相距60千米。张明8点从甲地出发去乙地,前一半时间平均速度为每分钟1千米,后一半时间平均速度为每分钟0.8千米。张明经过多少时间到达乙地?因为前一半时间与后一半时间相同,所以可假设为两人同时相向而行的情形,这样我们可以求出两人合走60千米所需的时间为[60÷(1+0.8)=]3313分钟。因此,张明从甲地到乙地的时间列算式为60÷(1+0.8)×2=6623(分钟)答:张明经过6623分钟到达乙地。练习2:1、A、B两地相距90千米。一辆汽车从A地出发去B地,前一半时间平均每小时行60千米,后一半时间平均每小时行40千米。这辆汽车经过多少时间可以到达B地?2、甲、乙两人同时从A点背向出发,沿400米环行跑道行走。甲每分钟走80米,乙蔑分钟走50米。两人至少经过多少分钟才能在A点相遇?3、在300米的环行跑道上,甲、乙两人同时并排起跑。甲平均每秒行5米,乙平均每秒行4.4米。两人起跑后第一次相遇在起跑线前面多少米?例题3:一个游泳池长90米。甲、乙二人分别从游泳池的两端同时出发,游到另一端立即返回。找这样往、返游,两人游10分钟。已知甲每秒游3米,乙每秒游2米。在出发后的两分钟内,二人相遇了几次?设甲的速度为a,乙的速度为b,a:b的最简比为m:n,那么甲、乙在半个周期内共走m+n个全程。若m>n,且m、n都是奇数,在一个周期内甲、乙相遇了2m次;若m>n,且m为奇数(或偶数),n为偶数(或奇数),在半个周期末甲、乙同时在乙(或甲)的出发位置,一个周期内,甲、乙共相遇(2m—1)次。甲速:乙速=3:2,由于3>2,且一奇数一偶数,一个周期内共相遇(2×3—1=)5次,共跑了[(3+2)×2=]10个全程。10分钟两人合跑周期的个数为:60×10÷[90÷(2+3)×10]=313(个)3个周期相遇(5×3=)15(次);13个周期相遇2次。一共相遇:15+2=17(次)答:二人相遇了17次。练习3:1、甲、乙两个运动员同时从游泳池的两端相向下水做往、返游泳训练。从池的一端到另一端甲要3分钟,乙要3.2分钟。两人下水后连续游了48分钟,一共相遇了多少次?2、一游泳池道长100米,甲、乙两个运动员从泳道的两端同时下水,做往、返训练15分钟,甲每分钟游81米,乙每分钟游89米。甲运动员一共从乙运动员身边经过了多少次?3、马路上有一辆身长为15米的公共汽车,由东向西行驶,车速为每小时18千米。马路一旁人行道上有甲、乙两名年轻人正在练长跑,甲由东向西跑,乙由西向东跑。某一时刻,汽车追上了甲,6秒争后汽车离开了甲,半分钟后,汽车遇到迎面跑来的乙,又经过了2秒钟,汽车离开乙,再过几秒钟,甲、乙两人相遇?例题4:客车和货车同时从A、B两地相对开出。客车每小时行驶50千米,货车的速度是客车的80%,相遇后客车继续行3.2小时到达B地。A、B两地相距多少千米?图35——13.2小时AB货车客车如图35-1所示,要求A、B两地相距多少千米,先要求客、货车合行全程所需的时间。客车3.2小时行了50×3.2=160(千米),货车行160千米所需的时间为:160÷(50×80%)=4(小时)所以(50+50×80%)×4=360(千米)答:A、B两地相距360千米。练习4:1、甲、乙两车分别从A、B两地同时出发相向而行,相遇点距中点320米。已知甲的速度是乙的速度的56,甲每分钟行800米。求A、B两地的路程。2、甲、乙两人分别从A、B两地同时出发相向而行,匀速前进。如果每人按一定的速度前进,则4小时相遇;如果每人各自都比原计划每小时少走1千米,则5小时相遇。那么A、B两地的距离是多少千米?3、甲、乙两人同时骑自行车从东、西两镇相向而行,甲、乙的速度比是3:4。已知甲行了全程的13,离相遇地点还有20千米,相遇时甲比乙少行多少千米?例题5:从甲地到乙地的路程分为上坡、平路、下坡三段,各段路程之比是1:2:3,某人走这三段路所用的时间之比是4:5:6。已知他上坡时的速度为每小时2.5千米,路程全长为20千米。此人从甲地走到乙地需多长时间?要求从甲地走到乙地需多长时间,先求上坡时用的时间。上坡的路程为20×11+2+3=103(千米),上坡的时间为103÷2.5=43(小时),从甲地走到乙地所需的时间为:43÷44+5+6=5(小时)答:此人从甲地走到乙地需5小时。练习5:1、从甲地到乙地的路程分为上坡、平路、下坡三段,各段路程之比是2:3:5,小亮走这三段路所用的时间之比是6:5:4。已知小亮走平炉时的速度为每小时4.5千米,他从甲地走到乙地共用了5小时。问:甲、乙两地相距多少千米?2、小明去登山,上午6点出发,走了一段平坦的路,爬上了一座山,在山顶停了1小时后按原路返回,中午11点回到家。已知他走平路的速度为每小时4千米,上坡速度为每小时3千米,下坡速度为每小时6千米。问:小明一共走了多少千米?3、青青从家到学校正好要翻一座小山,她上坡每分钟行50米,下坡速度比上坡快40%,从就秒到学校的路程为2800米,上学要用50分钟。从学校回家要用多少时间?例题6:甲、乙两人分别从A、B两地出发,相向而行,出发时他们的速度比是3:2。他们第一次相遇后,甲的速度提高了20%,乙的速度提高了30%。这样,当几B地时,乙离A地还有14千米。那么A、B两地间的距离是多少千米?图35——3BA149份14千米把A、B两地的路程平均分成5份,第一次相遇,甲走了3份的路程,乙走了2份的路程,当他们第一次相遇后,甲、乙的速度比为[3×(1+20%)]:[2×(1+30%)]=18:13。甲到达B点还需行2份的路程,这时乙行了2÷18×13=149份路程,从图35-3可以看出14千米对应(5—2—149)份[3×(1+20%)]:[2×(1+30%)]=18:132÷18×13=149(份)5—(2+149)=159(份)14÷159×5=45(千米)答:A、B两地间的距离是45千米。练习6:1、甲、乙两人步行的速度比是13:11,他们分别由A、B两地同时出发相向而行,0.5小时后相遇。如果他们同向而行,那么甲追上乙需要几小时?2、从A地到B地,甲要走2小时,乙要走1小时40分钟。若甲从A地出发8分钟后,乙从A地出发追甲。乙出发多久能追上甲?3、甲、乙两车分别从A、B两地出发,相向而行。出发时,甲、乙的速度比是5:4,相遇后,甲的速度减少20%,乙的速度增加20%,这样,当甲到达B地时,乙离A地还有10千米。那么,A、B两地相距多少千米?例题7:甲、乙两班学生到离校24千米的飞机场参观,一辆汽车一次只能坐一个班的学生。为了尽快到达机场,两个班商定,由甲班先坐车,乙班步行,同时出发。甲班学生在中途下车步行去机场,汽车立即返回接途中步行的乙班同学。已知凉拌学生步行的速度相同,汽车的速度是步行的7倍,汽车应在距机场多少千米处返回接乙班同学,才能使两班同学同时到达机场(学生上下车及汽车换向时间不计算)?图35——4甲乙131如图35-4所示,汽车到达甲班学生下车的地方又返回到与乙班学生相遇的地点,汽车所行路程应为乙班不行的7倍,即比乙班学生多走6倍,因此汽车单程比乙班步行多(6÷2)=3(倍)。汽车返回与乙班相遇时,乙班步行的路程与甲班学生步行到机场的路程相等。由此得出汽车送甲班学生下车地点到几长的距离为学校到机场的距离的1/5。列算式为24÷(1+3+1)=4.8(千米)答:汽车应在距飞机场4.8千米处返回接乙班学生,才能使两班学生同时到达飞机场。练习7:1、红星小学有80名学生租了一辆40座的车去还边观看日出。未乘上车的学生步行,和汽车同时出发,由汽车往返接送。学校离还边48千米,汽车的速度是步行的9倍。汽车应在距还边多少千米处返回接第二批学生,才能使学生同时到达还边?2、一辆汽车把货物从甲地云往乙地往返只用了5小时,去时所用的时间是回来的112倍,去时每小时比回来时慢17千米。汽车往返共行了多少千米?3、甲、乙两人以同样的速度,同时从A、B两地相向出发,内向遇后甲的速度提高了13,用212小时到达B地。乙的速度减少了16,再用多少小时可到达A地?例题8:一辆汽车从甲地开往乙地,如果把车速提高20%,可以比原定时间提前1小时到达;如果按原速行驶120千米后,再将速度提高25%,则可提前40分钟到达。那么甲、乙两地相距多少千米?此题是将行程、比例、百分数三种应用题综合在了一起。解题时,我们可先求出改车按原定速度到达乙地所需的时间,再求出甲、乙两地的路程。由车速提高20%可知,现在速度与原来速度的比是(1+20%):1=6:5,路程一定,所需时间比是速度比的反比。这样可算出原定时间为6小时。按原速行驶120千米后,速度提高25%可知,现速与原速的比是(1+25%):1=5:4,即所需时间比为4:5,可算出行驶120千米后,还需23÷(5—4)×5=313(小时),这样120千米占全程的(1—16×313),即可算出甲、乙两地的距离。现速与原速的比:(1+20%):1=6:5原定行完全程的时间:1÷(6—5)×6=6(小时)行120千米后,加快的速度与原速的比:(1+25%):1=5:4行120千米后,还需行走的时间:23÷(5—4)×5=313(小时)甲、乙两地的距离:120÷(1—16×313)=270(千米)答:甲、乙两地的距离270千米。练习8:1、一辆车从甲地开往乙地。如果把车速提高25%,呢么可以比原定时间提前24分钟到达;如果以原速形式80千米后,再将速度提高13,那么可以提前10分钟到达乙地。甲、乙两地相距多少器秒年米毫?2、一个正方形的一边减少20%,另一边增加2米,得到一
本文标题:小升初数学总复习同步拓展第十九讲行程问题二不含答案全国通用
链接地址:https://www.777doc.com/doc-7395325 .html