您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 资本运营 > 中考数学专题冲刺高分狙击专题分析解题方法知识结构典例精选能力评估检测专题七圆
专题七圆【专题分析】圆在中考中的常见考点有圆的性质及定理,圆周角定理及其推论,圆心角、圆周角、弧、弦之间的“等推”关系;切线的判定,切线的性质,切线长定理,弧长及扇形面积的计算,求阴影部分的面积等.对圆的考查在中考中以客观题为主,考查题型多样,关于圆的基本性质一般以选择题或填空题的形式进行考查,切线的判定等综合性强的问题一般以解答题的形式进行考查;圆在中考中的比重约为10%~15%.【解题方法】解决圆的有关问题常用的数学思想就是转化思想,方程思想和数形结合思想;常用的数学方法有分类讨论法,设参数法等.【知识结构】【典例精选】如图,⊙O的半径是3,点P是弦AB延长线上的一点,连结OP,若OP=4,∠APO=30°,则弦AB的长为()A.25B.5C.213D.13【思路点拨】先过点O作OC⊥AP,连结OB,根据OP=4,∠APO=30°,求出OC的值,在Rt△BCO中,根据勾股定理求出BC的值,进而得出AB的值.【解析】如图,过点O作OC⊥AP于点C,连结OB,∵OP=4,∠APO=30°,∴OC=4×sin30°=2.∵OB=3,∴BC=OB2-OC2=32-22=5,∴AB=25.故选A.答案:A规律方法:利用垂径定理进行证明或计算,通常是在半径、圆心距和弦的一半所组成的直角三角形中,利用勾股定理构建方程求出未知线段的长.如图,从一块直径是8m的圆形铁皮上剪出一个圆心角为90°的扇形,将剪下的扇形围成一个圆锥,圆锥的高是()A.42mB.5mC.30mD.215m【思路点拨】首先连结AO,求出AB,然后求出扇形的弧长BC,进而求出扇形围成的圆锥的底面半径,最后应用勾股定理求出圆锥的高即可.【解析】如图,连结AO,∵AB=AC,点O是BC的中点,∴AO⊥BC.又∵∠BAC=90°,∴∠ABO=∠ACO=45°,∴AB=2OB=2×(8÷2)=42(m).∴lBC=90π×42180=22π(m).∴将剪下的扇形围成的圆锥形的半径是22π÷2π=2(m).∴圆锥的高是22-22=30(m).故选C.答案:C规律方法:解决圆锥的相关问题,可以利用圆的周长等于扇形的弧长建立方程,利用方程解决问题.如图,在边长为6的正方形ABCD中,E是AB的中点,以E为圆心、ED为半径作半圆,交A,B所在的直线于M,N两点,分别以MD,ND为直径作半圆,则阴影部分的面积为()A.95B.185C.365D.725【思路点拨】根据图形可知阴影部分的面积=两个小的半圆的面积+△DMN的面积-大半圆的面积,MN为半圆的直径,从而可知∠MDN=90°,在Rt△MDN中,由勾股定理可知MN2=MD2+DN2,从而可得到两个小半圆的面积=大半圆的面积,故此阴影部分的面积=△DMN的面积,在Rt△AED中,ED=AD2+AE2=62+32=35,所以MN=65,然后利用三角形的面积公式求解即可.【解析】根据图形可知阴影部分的面积=两个小的半圆的面积+△DMN的面积-大半圆的面积.∵MN为大半圆的直径,∴∠MDN=90°.在Rt△MDN中,MN2=MD2+DN2,∴两个小半圆的面积和=大半圆的面积.∴阴影部分的面积=△DMN的面积.在Rt△AED中,ED=AD2+AE2=62+32=35,∴阴影部分的面积=△DMN的面积=12MN·AD=12×65×6=185.故选B.答案:B规律方法:求阴影部分的面积,一般是将所求阴影部分进行分割组合,转化为规则图形的和或差.如图,在Rt△ABC中,∠ACB=90°,以AC为直径作⊙O交AB于点D,连结CD.(1)求证:∠A=∠BCD.(2)若M为线段BC上一点,试问当点M在什么位置时,直线DM与⊙O相切?并说明理由.【思路点拨】(1)根据圆周角定理可得∠ADC=90°,根据直角三角形的性质可得∠A+∠ACD=90°,再由∠DCB+∠ACD=90°,可得∠A=∠BCD;(2)当点M是BC的中点时,直线DM与⊙O相切.连结DO,证明∠ODM=90°,进而证得直线DM与⊙O相切.【自主解答】(1)证明:∵AC为直径,∴∠ADC=90°,∴∠A+∠ACD=90°.∵∠ACB=90°,∴∠BCD+∠ACD=90°,∴∠A=∠BCD.(2)解:当点M是BC的中点时,直线DM与⊙O相切.理由如下:如图,连结DO,∵DO=CO,∴∠1=∠2.∵∠BDC=90°,点M是BC的中点,∴DM=CM,∴∠4=∠3.∵∠2+∠4=90°,∴∠1+∠3=90°,∴直线DM与⊙O相切.规律方法:在判定一条直线是圆的切线时,如果这条直线和圆有公共点,常作出经过公共点的半径,证明这条直线与经过公共点的半径垂直,概括为“连半径,证垂直,得切线”.【能力评估检测】一、选择题1.如图,AB是⊙O的直径,点C在⊙O上,AE是⊙O的切线,A为切点,连结BC并延长交AE于点D.若∠AOC=80°,则∠ADB的度数为(B)A.40°B.50°C.60°D.20°2.如图,⊙O是△ABC的外接圆,∠AOB=60°,AB=AC=2,则弦BC的长为(C)A.3B.3C.23D.43.如图,在⊙O中,弦AC∥半径OB,∠BOC=50°,则∠OAB的度数为(A)A.25°B.50°C.60°D.30°4.如图,直线CD与以线段AB为直径的圆相切于点D并交BA的延长线于点C,且AB=2,AD=1,P点在切线CD上移动.当∠APB的度数最大时,则∠ABP的度数为(B)A.15°B.30°C.60°D.90°5.如图,某数学兴趣小组将边长为3的正方形铁丝框ABCD变形为以A为圆心、AB长为半径的扇形(忽略铁丝的粗细),则所得扇形DAB的面积为(D)A.6B.7C.8D.96.如图,已知AB为⊙O的直径,AD切⊙O于点A,EC=CB.则下列结论中不一定正确的是(D)A.BA⊥DAB.OC∥AEC.∠COE=2∠CAED.OD⊥AC7.如图,菱形ABCD的对角线BD,AC分别为2,23,以B为圆心的弧与AD,DC相切,则阴影部分的面积是(D)A.23-33πB.43-33πC.43-πD.23-π8.如图,正六边形ABCDEF是边长为2cm的螺母,点P是FA延长线上的点,在A,P之间拉一条长为12cm的无伸缩性细线,一端固定在点A,握住另一端点P拉直细线,把它全部紧紧缠绕在螺母上(缠绕时螺母不动),则点P运动的路径长为(B)A.13πcmB.14πcmC.15πcmD.16πcm9.如图,在矩形ABCD中,AB=4,AD=5,AD,AB,BC分别与⊙O相切于E,F,G三点,过点D作⊙O的切线交BC于点M,切点为N,则DM的长为()A.133B.92C.4313D.25解:如图,连接OE,OF,ON,OG.∵AD,AB,BC分别与⊙O相切于E,F,G三点,∴∠AEO=∠AFO=∠OFB=∠BGO=90°.∴四边形AFOE,FBGO都是正方形.∴AF=BF=AE=BG=2.∴DE=3.∵DM是⊙O的切线,∴DN=DE=3,MN=MG.∴CM=5-2-MN=3-MN.在Rt△DMC中,DM2=CD2+CM2,∴(3+MN)2=(3-MN)2+42.∴NM=43.∴DM=3+43=133.故选A.答案:A二、填空题10.在平面直角坐标系中,O为坐标原点,则直线y=x+2与以O点为圆心,1为半径的圆的位置关系为相切.11.如图,圆内接四边形ABCD两组对边的延长线分别相交于点E,F,且∠A=55°,∠E=30°,则∠F=40°.12.如图,正三角形ABC的边长为2,点A,B在半径为2的圆上,点C在圆内,将正三角形ABC绕点A逆时针旋转,当点C第一次落在圆上时,点C运动的路线长为.【解析】设点C落在圆上的点为C′,连结OA,OB,OC′,则OA=OB=2.又∵AB=2,∴OA2+OB2=AB2,∴∠AOB=90°,∴∠OAB=45°,同理∠OAC′=45°,∴∠BAC′=90°.∵△ABC为等边三角形,∴∠CAB=60°,∴∠CAC′=30°,∴点C运动的路线长为30π×2180=π3.故答案为π3.答案:π313.如图,在△ABC中,∠BAC=90°,AB=5cm,AC=2cm,将△ABC绕顶点C按顺时针方向旋转45°至△A1B1C的位置,则线段AB扫过区域(图中的阴影部分)的面积为cm2.【解析】在Rt△ABC中,BC=AC2+AB2=29(cm),S扇形BCB1=292360=29π8(cm2),S△CB1A1=12×5×2=5(cm2),S扇形CAA1=45π×22360=π2(cm2),故S阴影部分=S扇形BCB1+S△CB1A1-S△ABC-S扇形CAA1=29π8+5-5-π2=25π8(cm2).答案:25π8三、解答题14.如图,AB是⊙O的直径,BC切⊙O于点B,OC平行于弦AD,过点D作DE⊥AB于点E,连结AC,与DE交于点P.求证:(1)PE=PD;(2)AC·PD=AP·BC.证明:(1)∵AB是⊙O的直径,BC是切线,∴AB⊥BC,∵DE⊥AB,∴DE∥BC,∴△AEP∽△ABC,∴EPBC=AEAB.又∵AD∥OC,∴∠DAE=∠COB,∴△AED∽△OBC,∴EDBC=AEOB=AE12AB=2AEAB.∴ED=2EP,∴PE=PD.(2)∵AB是⊙O的直径,BC是切线,∴AB⊥BC,∵DE⊥AB,∴DE∥BC,∴△AEP∽△ABC,∴APAC=PEBC.∵PE=PD,∴APAC=PDBC,∴AC·PD=AP·BC.15.如图,在△OAB中,OA=OB=10,∠AOB=80°,以点O为圆心,6为半径的优弧MN分别交OA,OB于点M,N.(1)点P在右半弧上(∠BOP是锐角),将OP绕点O逆时针旋转80°得OP′,求证:AP=BP′;(2)点T在左半弧上,若AT与弧相切,求点T到OA的距离;(3)设点Q在优弧MN上,当△AOQ的面积最大时,直接写出∠BOQ的度数.(1)证明:如图,∵∠AOP=∠AOB+∠BOP=80°+∠BOP,∠BOP′=∠POP′+∠BOP=80°+∠BOP,∴∠AOP=∠BOP′.又∵OA=OB,OP=OP′,∴△AOP≌△BOP′.∴AP=BP′.(2)解:如图,连结OT,过点T作TH⊥OA于点H.∵AT与MN相切,∴∠ATO=90°.∴AT=OA2-OT2=102-62=8.∵12OA·TH=12AT·OT,即12×10×TH=12×8×6,∴TH=245,即点T到OA的距离为245.(3)10°,170°.16.如图,在Rt△ABC中,∠C=90°,∠BAC的平分线AD交BC边于点D.以AB上一点O为圆心作⊙O,使⊙O经过点A和点D.(1)判断直线BC与⊙O的位置关系,并说明理由;(2)若AC=3,∠B=30°.①求⊙O的半径;②设⊙O与AB边的另一个交点为E,求线段BD,BE与劣弧DE所围成的阴影部分的面积(结果保留根号和π).解:(1)直线BC与⊙O相切.理由如下:如图,连结OD,∵OA=OD,∴∠OAD=∠ODA,∵∠BAC的角平分线AD交BC边于点D,∴∠CAD=∠OAD,∴∠CAD=∠ODA,∴OD∥AC,∴∠ODB=∠C=90°,即OD⊥BC.∴直线BC与⊙O相切.(2)①设OA=OD=r,∵在Rt△BDO中,∠B=30°,∴OB=2r,∴在Rt△ACB中,∠B=30°,∴AB=2AC=6,∴3r=6,解得r=2.②∵在Rt△ODB中,∠B=30°,∴∠BOD=60°,∴S扇形ODE=60π×22360=23π,∴阴影部分面积为S△BOD-S扇形ODE=23-23π.精诚文库:精诚文库-小学,初中,高中,中考,高考教学资源下载门户网站!
本文标题:中考数学专题冲刺高分狙击专题分析解题方法知识结构典例精选能力评估检测专题七圆
链接地址:https://www.777doc.com/doc-7402772 .html