您好,欢迎访问三七文档
当前位置:首页 > 商业/管理/HR > 经营企划 > FPGA研发牛人心得总结(DOC55页)
FPGA研发之道FPGA是个什么玩意?FPGA是个什么玩意?首先来说:FPGA是一种器件。其英文名feildprogramablegatearry。很长,但不通俗。通俗来说,是一种功能强大似乎无所不能的器件。通常用于通信、网络、图像处理、工业控制等不同领域的器件。就像ARM、DSP等嵌入式器件一样,成为无数码农码工们情感倾泻而出的代码真正获得生命的地方。只不过,一样的编程,却是不一样的思想。嵌入式软件人员看到的是C。而FPGA工程师看到是硬件描述语言,verilog或VHDL。软件看到是函数、对象、重构。FPGA工程师则是模块、流水、复用。从现象上看,都是代码到下载程序再到硬件上运行。不能只看现象而忽略本质。FPGA开发本质上是设计一颗IC,“**的身子,丫鬟的命”不是所有verilog/VHDL代码,都能获得青睐去流片成为真正的芯片,而更多的则成为运行在FPGA器件上,成为完成相同功能的替代品。其实现的功能却一点也不逊色于百万身价流片的近亲。从而成为独树一帜的行业。FPGA开发的流程,是通过verilog/VHDL等硬件描述语言通过EDA工具编译、综合、布局布线成为下载文件,最终加载到FPGA器件中去,完成所实现的功能。那硬件描述语言描述的是什么?这里描述的就是组合逻辑电路和时序逻辑电路。组合逻辑电路就是大家所熟知的与门、或门、非门。时序逻辑电路则是触发器。数字芯片上绝大部分逻辑都是这两种逻辑实现的。也就是基本上每个电子行业的人所学过的数字电路。顺便说一下,感谢香农大师,在其硕士毕业论文继电器与开关电路的符号分析就奠定了数字电路的的根基。只不过在FPGA中,与或非的操作变成了查找表的操作。于是所有的数字电路变成了查找表和寄存器,这就构成了FPGA的基础。查找表负责逻辑实现,寄存器存储电路状态。二者配合,双剑合璧,天衣无缝。这是最初的FPGA的雏形。现代FPGA内部出了查找表和寄存器之外,还有RAM块,用于存储大量的数据块,这是因为RAM块较寄存器来存储大量数据更能节省芯片实现的面积。FPGA内部的时序电路则需要时钟的输入,通常FPGA内部需要时钟种类较多,因此需要在片内产生所需的的相关的时钟,如不同频率,不同相位的时钟,因此时钟管理单元DCM/PLL也是必不可少的内部部件。除此之外,FPGA内部还包括接口I/O,I/O分为普通I/O和高速I/O,高速I/O支持例如高速的SERDES,用于实现XAUI,PCIE等高速接口,这些接口动辄几Gbps到10Gbps以上。此外种类多种多样的硬核IP也是各FPGA厂商差异化竞争利器,例如POWERPC、ARM等硬核IP。从而构成CPU+FPGA于一体的集可编程性和可重构的处理平台。因此,相对来所,FPGA虽然发展有二三十年的历史,其基本架构一直不变不大。回到问题开始的地方,FPGA的英文翻译过来是现场可编程门阵列。这是相对ASIC来说的,ASIC的硬件也可看做是门阵列,但是其是非可编程的器件。流片完成其功能就固化了,而FPGA的可编程性就在其能够重新下载配置文件,来改变其内在的功能,这就是其可编程性的由来。从前端开发流程来说,FPGA和ASIC开发并无二至。由于ASIC开发一次性投入成本较高,FPGA无疑是一种经济的替代方案,用于实现的高速的数据并行处理。如业务能够支撑大规模应用并且协议固化,则能够分摊成本的ASIC实现就有成本的优势。FPGA作为一种器件,技术上主要垄断在少数大公司手中,那就是双巨头ALTERA和XILINX。除此之外还有一些份额相对较小的公司,例如ACTEL和LATTICE。不止是FPGA的硬件芯片,其配套的EDA工具技术壁垒更高。因此相对于CPU来说,FPGA的国产化更不乐观,不过已经有国内的厂商来从事这一行业,例如国微和京微雅格等,也在一些细分市场上推出自己的FPGA产品。FPGA和他那些小伙伴们(一)系统架构组成通常来讲,“一个好汉三个帮”,一个完整的嵌入式系统中由单独一个FPGA使用的情况较少。通常由多个器件组合完成,例如由一个FPGA+CPU来构成。通常为一个FPGA+ARM,ARM负责软件配置管理,界面输入外设操作等操作,FPGA负责大数据量运算,可以看做CPU的专用协处理器来使用,也常会用于扩展外部接口。常用的有ARM+FPGA,DSP+FPGA,或者网络处理器+FPGA等种种架构形式,这些架构形式构成整个高速嵌入式设备的处理形态。不得不说的是,随着技术的进步,现在CPU中集成的单元也随之增加,例如TI的“达芬奇”架构的处理器内部通常由ARM+DSP构成。同时异构的处理器形态业逐渐流行,如ARM9+ARM7的结构。这类一个主要处理系统(ARM9)外带辅助处理系统(ARM7)的设计,同样成为现在处理器设计的流行方向。主处理系统运行嵌入式操作系统,而辅助处理单元则专注某一些的专用领域的处理。这些系统的应用减少了FPGA作为CPU协处理单元的领域。因为毕竟FPGA相比ARM等流行嵌入式处理器价格要相对较高。在这种情形下,FPGA的厂商似乎也感受到了压力,不约而同推出了带ARM硬核的FPGA,例如ALTERA的和XILINX的ZYNQ和ALTERA的SOCFPGA。这是即是互相竞争的需要,也是同众多CPU厂商一掰手腕的杰总。即使在这两种在趋势下,经典的处理器+FPGA的设计仍然可看做为高性能嵌入式系统的典型配置。经典的处理器+FPGA的配置中有多种的架构形式,即多个处理器单元,可能是ARM,MIPS,或者DSP,FPGA也可能是多片的配置,具体架构形式于具体处理的业务相关和目标设备的定位也相关。因为FPGA作为简单业务流大数据量的处理形态仍然是CPU无可比拟的优势,FPGA内部可以开发大量业务数据并行,从而实现高速的数据处理。在实现高速处理方面,CPU的另一个发展趋势是多核,多核处理器也能处理大数据量的业务的并行,例如业界TERILA已推出64核的多核处理器,采用MIPS处理器,通过二维MASH网络连接在一起,形成NOC的结构。在性能上已经和现有的高速FPGA的处理能力上不相上下。但是多核处理器的不得不说的问题就是,同一业务流分配到多核处理上后,如需交互,例如访问同一资源,就会造成读写的缓存一致的问题,解决的这一问题的天然思路是加锁,即在变量访问上加自旋锁,但是带来的问题就是处理性能的急剧下降。而FPGA无论并行处理和同一变量的访问,都可以变成工程师的设计水平的问题,没有原理性的挑战。没有一种器件可以满足全人类的众多需求,因此不用担心FPGA没有用武之地。必定是一系列产品的组合。下面主要介绍一下FPGA可以作为现今热门场景的几种应用。(1)网络存储产品,特别是现在的NAS,或者SAN设备上,其存储的时间、接口、安全性等都要求较高,而FPGA无论处理性能还是扩展接口的能力都使其在这一领域大有作为。现在高端FPGA单片就可以扩展32个或者更多4G或者8G的FC接口。并且其协议处理相对的固定,也使FPGA在这一领域有大量的可能应用。(2)高速网络设备,现在高速网络设备10G、40/100G以太网设备领域,同样FPGA也是关键的处理部件。特别是IPv6的商用化及大数据对于基础设施的高要求,都使这一领域的处理应用会逐渐广泛,这一领域通常是高速网络处理器(NP)+FPGA的典型架构。(3)4G等通信设备,对于新一代通信基站的信号处理,FPGA+DSP阵列的架构就是绝配。特别是在专用处理芯片面世之前,这样的架构可以保证新一代通信基础设施的迅速研发和部署。没有完美的架构,只有合适的组合,各种芯片和架构都是为应用服务,互相的渗透是趋势,也是必然。FPGA相对处理器的可编程领域,仍然属于小众(虽然人数也不少)。但是正像一则笑话所说:大腿虽然比根命根子粗,但决没有命子重要。这算开个玩笑。FPGA的实现为以后的芯片化留下了许多可能和想象空间,从而在应用大量爆发时通过芯片化来大幅降低成本,这这也正是其他可编程器件所不能比拟的。FPGA和他那些小伙伴们(二)器件互联系统架构确定,下一步就是FPGA与各组成器件之间互联的问题了。通常来说,CPU和FPGA的互联接口,主要取决两个要素:(1)CPU所支持的接口。(2)交互的业务。通常来说,FPGA一般支持与CPU连接的数字接口,其常用的有EMIF,PCI,PCI-E,UPP,网口(MII/GMII/RGMII),DDR等接口。作为总线类接口,FPGA通常作为从设备与CPU连接,CPU作为主设备通过访问直接映射的地址对FPGA进行访问。根据是否有时钟同步,通常总线访问分为同步或异步的总线,根据CPU外部总线协议有所不同,但数据、地址、控制信号基本是总线访问类型中总线信号所不能省略的。CPU手册中会对信号定义和时序控制有着详细的说明,FPGA需要根据这些详细说明来实现相应的逻辑。同时CPU还可以对访问时序进行设置,比如最快时钟,甚至所需的最小建立时间和保持时间,这些一般CPU都可以进行设置,而这些具体参数,不仅影响FPGA的实现,也决定总线访问的速度和效率。对于同步总线,只需要根据输入时钟进行采样处理即可,但对于异步总线,则需要的对进入的控制信号进行同步化处理,通常处理方式是寄存两拍,去掉毛刺。因此用于采样的时钟就与CPU所设置的总线参数相关,如采样时钟较低,等控制信号稳定后在译码后输出,一个总线操作周期的时间就会相对较长,其处理的效率也相对较低;假如采样时钟过快,则对关键路径又是一个挑战,因此合理设定采样频率,便于接口的移植并接口的效率是设计的关键点和平衡点。对于总线型的访问来说,数据信号通常为三态信号,用于输入和输出。这种设计的目的是为了减少外部连线的数量。因为数据信号相对较多一般为8/16/32位数据总线。总线的访问的优势是直接映射到系统的地址区间,访问较为直观。但相对传输速率不高,通常在几十到100Mbps以下。这种原因的造成主要为以下因素(1)受制总线访问的间隔,总线操作周期等因素,总线访问间隔即两次访问之间总线空闲的时间,而总线操作周期为从发起到相应的时间。(2)不支持双向传输,并且FPGA需主动发起对CPU操作时,一般只有发起CPU的中断处理一种方式。这种总线型操作特点,使其可以用作系统的管理操作,例如FPGA内部寄存器配置,运行过程中所需参数配置,以及数据流量较小的信息交互等操作。这些操作数据量和所需带宽适中,可以应对普通的嵌入式系统的处理需求。对于大数据流量的数据交互,一般采用专用的总线交互,其特点是,支持双向传输,总线传输速率较快,例如GMII/RGMII、Upp、专用LVDS接口,及SERDES接口。专用SERDES接口一般支持的有PCI-E,XAUI,SGMII,SATA,Interlaken接口等接口。GMII/RGMII,专用LVDS接口一般处理在1GbpS一下的业务形式,而PCI-E,根据其型号不同,支持几Gbps的传输速率。而XAUI可支持到10Gbps的传输速率,lnterlaken接口可支持到40Gbps的业务传输。对于不同所需的业务形式及处理器的类型,则可选择相应的接口形式,来传输具体的业务。现今主流FPGA中都提供的各种接口的IP。选择FPGA与各型CPU互联接口,一般选择主流的应用交互方案,特殊的接口缺少支撑IP,导致开发、调试、维护和兼容性的成本都较大,同时注意系统的持续演进的需要,如只在本项目使用一次,而下一项目或开发阶段已摒弃此类接口,则需提前规划技术路线。毕竟一个稳定、高效的接口互联是一个项目成功的基础。不是所有的嵌入式系统都需要“高大上”的接口形式,各类低速的稳定接口也同样在FPGA的接口互联中有着重要的角色,其中UART、SPI、I2C等连接形式也非常的常见。毕竟,一个优秀的设计不是“高大上”的堆积,而是对需求最小成本的满足。适合的才是最美的。灵活性的陷阱如果说用一个词来描述FPGA的特性,灵活性肯定名列前茅。FPGA的灵活性在于:(一)I/O的灵活性,其可以通过其I/O组成各种接口与各种器件连接,并且支持不同的电气特性。(二)内部存储器灵活性,可以通过IP生成工具生成各种
本文标题:FPGA研发牛人心得总结(DOC55页)
链接地址:https://www.777doc.com/doc-741380 .html