您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 锐角三角函数的真题汇编及答案
锐角三角函数的真题汇编及答案一、选择题1.如图,在扇形OAB中,120AOB,点P是弧AB上的一个动点(不与点A、B重合),C、D分别是弦AP,BP的中点.若33CD,则扇形AOB的面积为()A.12B.2C.4D.24【答案】A【解析】【分析】如图,作OH⊥AB于H.利用三角形中位线定理求出AB的长,解直角三角形求出OB即可解决问题.【详解】解:如图作OH⊥AB于H.∵C、D分别是弦AP、BP的中点.∴CD是△APB的中位线,∴AB=2CD=63,∵OH⊥AB,∴BH=AH=33,∵OA=OB,∠AOB=120°,∴∠AOH=∠BOH=60°,在Rt△AOH中,sin∠AOH=AHAO,∴AO=336sin32AHAOH,∴扇形AOB的面积为:2120612360,故选:A.【点睛】本题考查扇形面积公式,三角形的中位线定理,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型.2.图1是一个地铁站入口的双翼闸机.如图2,它的双翼展开时,双翼边缘的端点A与B之间的距离为10cm,双翼的边缘AC=BD=54cm,且与闸机侧立面夹角∠PCA=∠BDQ=30°.当双翼收起时,可以通过闸机的物体的最大宽度为()A.(543+10)cmB.(542+10)cmC.64cmD.54cm【答案】C【解析】【分析】过A作AE⊥CP于E,过B作BF⊥DQ于F,则可得AE和BF的长,依据端点A与B之间的距离为10cm,即可得到可以通过闸机的物体的最大宽度.【详解】如图所示,过A作AE⊥CP于E,过B作BF⊥DQ于F,则Rt△ACE中,AE=12AC=12×54=27(cm),同理可得,BF=27cm,又∵点A与B之间的距离为10cm,∴通过闸机的物体的最大宽度为27+10+27=64(cm),故选C.【点睛】本题主要考查了特殊角的三角函数值,特殊角的三角函数值应用广泛,一是它可以当作数进行运算,二是具有三角函数的特点,在解直角三角形中应用较多.3.如图,在等腰直角△ABC中,∠C=90°,D为BC的中点,将△ABC折叠,使点A与点D重合,EF为折痕,则sin∠BED的值是()A.53B.35C.22D.23【答案】B【解析】【分析】先根据翻折变换的性质得到DEFAEF,再根据等腰三角形的性质及三角形外角的性质可得到BEDCDF,设1CD,CFx,则2CACB,再根据勾股定理即可求解.【详解】解:∵△DEF是△AEF翻折而成,∴△DEF≌△AEF,∠A=∠EDF,∵△ABC是等腰直角三角形,∴∠EDF=45°,由三角形外角性质得∠CDF+45°=∠BED+45°,∴∠BED=∠CDF,设CD=1,CF=x,则CA=CB=2,∴DF=FA=2﹣x,∴在Rt△CDF中,由勾股定理得,CF2+CD2=DF2,即x2+1=(2﹣x)2,解得:34x,3sinsin5CFBEDCDFDF.故选:B.【点睛】本题考查的是图形翻折变换的性质、等腰直角三角形的性质、勾股定理、三角形外角的性质,涉及面较广,但难易适中.4.如图,在矩形ABCD中E是CD的中点,EA平分,BEDPEAE交BC于点P,连接PA,以下四个结论:①EB平分AEC;②PABE;③32ADAB;④2PBPC.其中结论正确的个数是()A.4个B.3个C.2个D.1个【答案】A【解析】【分析】根据矩形的性质结合全等三角形的判定与性质得出△ADE≌△BCE(SAS),进而求出△ABE是等边三角形,再求出△AEP≌△ABP(SSS),进而得出∠EAP=∠PAB=30°,再分别得出AD与AB,PB与PC的数量关系即可.【详解】解:∵在矩形ABCD中,点E是CD的中点,∴DE=CE,又∵AD=BC,∠D=∠C,∴△ADE≌△BCE(SAS),∴AE=BE,∠DEA=∠CEB,∵EA平分∠BED,∴∠AED=∠AEB,∴∠AED=∠AEB=∠CEB=60°,故:①EB平分∠AEC,正确;∴△ABE是等边三角形,∴∠DAE=∠EBC=30°,AE=AB,∵PE⊥AE,∴∠DEA+∠CEP=90°,则∠CEP=30°,故∠PEB=∠EBP=30°,则EP=BP,又∵AE=AB,AP=AP,∴△AEP≌△ABP(SSS),∴∠EAP=∠PAB=30°,∴AP⊥BE,故②正确;∵∠DAE=30°,∴tan∠DAE=DEAD=tan30°=33,∴AD=3DE,即32ADCD,∵AB=CD,∴③32ADAB正确;∵∠CEP=30°,∴CP=12EP,∵EP=BP,∴CP=12BP,∴④PB=2PC正确.综上所述:正确的共有4个.故选:A.【点睛】此题主要考查了四边形综合,全等三角形的判定与性质,等边三角形的判定与性质,含30度角的直角三角形性质以及三角函数等知识,证明△ABE是等边三角形是解题关键.5.如图,一艘轮船位于灯塔P的北偏东60°方向,与灯塔P的距离为30海里的A处,轮船沿正南方向航行一段时间后,到达位于灯塔P的南偏东30°方向上的B处,则此时轮船所在位置B与灯塔P之间的距离为()A.60海里B.45海里C.203海里D.303海里【答案】D【解析】【分析】根据题意得出:∠B=30°,AP=30海里,∠APB=90°,再利用勾股定理得出BP的长,求出答案.【详解】解:由题意可得:∠B=30°,AP=30海里,∠APB=90°,故AB=2AP=60(海里),则此时轮船所在位置B处与灯塔P之间的距离为:BP=22303ABAP(海里)故选:D.【点睛】此题主要考查了勾股定理的应用以及方向角,正确应用勾股定理是解题关键.6.如图,已知AB是⊙O的直径,点C在⊙O上,过点C的切线与AB的延长线交于点P,连接AC,若∠A=30°,PC=3,则⊙O的半径为()A.3B.23C.32D.233【答案】A【解析】连接OC,∵OA=OC,∠A=30°,∴∠OCA=∠A=30°,∴∠COB=∠A+∠ACO=60°,∵PC是⊙O切线,∴∠PCO=90°,∠P=30°,∵PC=3,∴OC=PC•tan30°=3,故选A7.如图,某建筑物的顶部有一块标识牌CD,小明在斜坡上B处测得标识牌顶部C的仰角为45°,沿斜坡走下来在地面A处测得标识牌底部D的仰角为60°,已知斜坡AB的坡角为30°,AB=AE=10米.则标识牌CD的高度是()米.A.15-53B.20-103C.10-53D.53-5【答案】A【解析】【分析】过点B作BM⊥EA的延长线于点M,过点B作BN⊥CE于点N,通过解直角三角形可求出BM,AM,CN,DE的长,再结合CD=CN+EN−DE即可求出结论.【详解】解:过点B作BM⊥EA的延长线于点M,过点B作BN⊥CE于点N,如图所示.在Rt△ABE中,AB=10米,∠BAM=30°,∴AM=AB•cos30°=53(米),BM=AB•sin30°=5(米).在Rt△ACD中,AE=10(米),∠DAE=60°,∴DE=AE•tan60°=103(米).在Rt△BCN中,BN=AE+AM=10+53(米),∠CBN=45°,∴CN=BN•tan45°=10+53(米),∴CD=CN+EN−DE=10+53+5−103=15−53(米).故选:A.【点睛】本题考查了解直角三角形−仰角俯角问题及解直角三角形−坡度坡脚问题,通过解直角三角形求出BM,AM,CN,DE的长是解题的关键.8.如图,ABC是一张顶角是120的三角形纸片,,6ABACBC现将ABC折叠,使点B与点A重合,折痕DE,则DE的长为()A.1B.2C.2D.3【答案】A【解析】【分析】作AH⊥BC于H,根据等腰三角形的性质求出BH,根据翻折变换的性质求出BD,根据正切的定义解答即可.【详解】解:作AH⊥BC于H,∵AB=AC,AH⊥BC,BH=12BC=3,∵∠BAC=120°,AB=AC,∴∠B=30°,∴AB=30BHcos=23,由翻折变换的性质可知,DB=DA=3,∴DE=BD•tan30°=1,故选:A.【点睛】此题考查翻折变换的性质、勾股定理的应用,解题关键在于掌握翻折变换是一种对称变换,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.9.如图,对折矩形纸片ABCD,使AD与BC重合,得到折痕EF,把纸片展平,再一次折叠纸片,使点A落在EF上的点A′处,并使折痕经过点B,得到折痕BM,若矩形纸片的宽AB=4,则折痕BM的长为()A.833B.433C.8D.83【答案】A【解析】【分析】根据折叠性质可得BE=12AB,A′B=AB=4,∠BA′M=∠A=90°,∠ABM=∠MBA′,可得∠EA′B=30°,根据直角三角形两锐角互余可得∠EBA′=60°,进而可得∠ABM=30°,在Rt△ABM中,利用∠ABM的余弦求出BM的长即可.【详解】∵对折矩形纸片ABCD,使AD与BC重合,AB=4,∴BE=12AB=2,∠BEF=90°,∵把纸片展平,再一次折叠纸片,使点A落在EF上的点A’处,并使折痕经过点B,∴A′B=AB=4,∠BA′M=∠A=90°,∠ABM=∠MBA′,∴∠EA′B=30°,∴∠EBA′=60°,∴∠ABM=30°,∴在Rt△ABM中,AB=BMcos∠ABM,即4=BMcos30°,解得:BM=833,故选A.【点睛】本题考查了折叠的性质及三角函数的定义,折叠前后,对应边相等,对应角相等;在直角三角形中,锐角的正弦是角的对边比斜边;余弦是角的邻边比斜边;正切是角的对边比邻边;余切是角的邻边比对边;熟练掌握相关知识是解题关键.10.如图,在RtABC中,90ACB,3tan4B,CD为AB边上的中线,CE平分ACB,则AEAD的值()A.35B.34C.45D.67【答案】D【解析】【分析】根据角平分线定理可得AE:BE=AC:BC=3:4,进而求得AE=37AB,再由点D为AB中点得AD=12AB,进而可求得AEAD的值.【详解】解:∵CE平分ACB,∴点E到ACB的两边距离相等,设点E到ACB的两边距离位h,则S△ACE=12AC·h,S△BCE=12BC·h,∴S△ACE:S△BCE=12AC·h:12BC·h=AC:BC,又∵S△ACE:S△BCE=AE:BE,∴AE:BE=AC:BC,∵在RtABC中,90ACB,3tan4B,∴AC:BC=3:4,∴AE:BE=3:4∴AE=37AB,∵CD为AB边上的中线,∴AD=12AB,∴367172ABAEADAB,故选:D.【点睛】本题主要考查了角平分线定理的应用及三角函数的应用,通过面积比证得AE:BE=AC:BC是解决本题的关键.11.把RtABC三边的长度都扩大为原来的3倍,则锐角A的余弦值()A.扩大为原来的3倍B.缩小为原来的13C.扩大为原来的9倍D.不变【答案】D【解析】【分析】根据相似三角形的性质解答.【详解】三边的长度都扩大为原来的3倍,则所得的三角形与原三角形相似,∴锐角A的大小不变,∴锐角A的余弦值不变,故选:D.【点睛】此题考查相似三角形的判定和性质、锐角三角函数的定义,掌握相似三角形的对应角相等是解题的关键.12.如图,ABC中,90ACB,O为AB中点,且4AB,CD,AD分别平分ACB和CAB,交于D点,则OD的最小值为().A.1B.22C.21D.222【答案】D【解析】【分析】根据三角形角平分线的交点是三角形的内心,得到DO最小时,DO为三角形ABC内切圆的半径,结合切线长定理得到三角形为等腰直角三角形,从而得到答案.【详解】解:CD,AD分别平分ACB和CAB,交于D点,D∴为ABC的内心,OD最小时,OD为ABC的内切圆的半径,,DOAB过D作,,DEACDFBC垂足分别为,,EF,DEDFDO四边形DFCE为正方形,O为AB的中点,4,AB2,AOBO由切线长定理得:2,2,,AOAEBOBFC
本文标题:锐角三角函数的真题汇编及答案
链接地址:https://www.777doc.com/doc-7413850 .html