您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 日照实验高中2004级模块考试(必修1)
日照实验高中2004级模块考试(必修1)一、选择题(本题共12小题,每小题5分,共60分,将答案直接填在下表中)题号123456789101112答案1.已知全集U={0,2,4,6,8,10},集合A={2,4,6},B={1},则UA∪B等于(A){0,1,8,10}(B){1,2,4,6}(C){0,8,10}(D)Φ2.下列关系中正确的个数为①0∈{0},②Φ{0},③{0,1}{(0,1)},④{(a,b)}={(b,a)}(A)1(B)2(C)3(D)43.不等式(x+1)(2-x)>0的解集为(A){|12}xxx或(B){|21}xxx或(C){|21}xx(D){|12}xx4.方程组3242yxyx的解集为(A){2,1}(B){1,2}(C){(2,1)}(D)(2,1)5.下列对应中是集合A到集合B的映射的个数为①A={1,3,5,7,9},B={2,4,6,8,10},对应法则f:x→y=x+1,x∈A,y∈B;②A={x|00<x<900},B={y|0<y<1},对应法则f:x→y=sinx,x∈A,y∈B;③A={x|x∈R},B={y|y≥0},对应法则f:x→y=x2,x∈A,y∈B.(A)0(B)1(C)2(D)36.三个数5.06,65.0,6log5.0的大小顺序为(A)5.05.0666log5.0(B)6log65.05.05.06(C)65.05.05.066log(D)5.065.065.06log7.函数12log(43)yx的定义域为(A)3(,)4(B)(,1](C)3(,1]4(D)3(,1)48.直线y=3与函数y=|x2-6x|图象的交点个数为(A)4个(B)3个(C)2个(D)1个9.某林场计划第一年造林10000亩,以后每年比前一年多造林20%,则第四年造林(A)14400亩(B)172800亩(C)17280亩(D)20736亩10.若2()fxx,则对任意实数x1,x2,下列不等式总成立的是(A)12()2xxf≤12()()2fxfx(B)12()2xxf<12()()2fxfx(C)12()2xxf≥12()()2fxfx(D)12()2xxf>12()()2fxfx11.某学生从家里去学校上学,骑自行车一段时间,因自行车爆胎,后来推车步行,下图中横轴表示出发后的时间,纵轴表示该生离学校的距离,则较符合该学生走法的图是12.若函数f(x)唯一的一个零点同时在区间(0,16)、(0,8)、(0,4)、(0,2)内,那么下列命题中正确的是(A)函数f(x)在区间(0,1)内有零点(B)函数f(x)在区间(0,1)或(1,2)内有零点(C)函数f(x)在区间[2,16)内无零点(D)函数f(x)在区间(1,16)内无零点二.填空题(本题共4小题,每小题4分,共16分)13.若A={0,1,2,4,5,7,8},B={1,3,6,7,9},C={3,4,7,8},那么集合(A∩B)∪C=____________________.14.已知f(x)=)0x(0)0x()0x(1x,则f[f(-2)]=________________.15.函数()ln2fxxx的零点个数为.16.一个高中研究性学习小组对本地区2000年至2002年快餐公司发展情况进行了调查,制成了该地区快餐公司个数情况的条形图和快餐公司盒饭年销售量的平均数情况条形图(如图),根据图中提供的信息可以得出这三年中该地区每年平均销售盒饭万盒.三.解答题(本大题共6小题,满分共74分)17.(本小题满分12分)dd0d0d0d0tOt0(A)(B)(C)(D)tdOt0tdOt0tdOt0已知A={1,2,x2-5x+9},B={3,x2+ax+a},如果A={1,2,3},2∈B,求实数a的值.18.(本小题满分12分)已知M={x|2≤x≤5},N={x|a+1≤x≤2a1}.(Ⅰ)若MN,求实数a的取值范围;(Ⅱ)若MN,求实数a的取值范围.19.(本小题满分12分)建造一个容积为8立方米,深为2米的无盖长方体蓄水池,池壁的造价为每平方米100元,池底的造价为每平方米300元,把总造价y(元)表示为底面一边长x(米)的函数.20.(本小题满分12分)已知函数f(x)=x2+ax+b,且对任意的实数x都有f(1+x)=f(1-x)成立.(Ⅰ)求实数a的值;(Ⅱ)利用单调性的定义证明函数f(x)在区间[1,+∞)上是增函数.21.(本小题满分12分)A、B两城相距100km,在两地之间距A城xkm处D地建一核电站给A、B两城供电,为保证城市安全.核电站距市距离不得少于10km.已知供电费用与供电距离的平方和供电量之积成正比,比例系数25.0.若A城供电量为20亿度/月,B城为10亿度/月.(Ⅰ)把月供电总费用y表示成x的函数,并求定义域;(Ⅱ)核电站建在距A城多远,才能使供电费用最小.22.(本小题满分14分)我国从1998年到2002年,每年的国内生产总值如下表:年份19981999200020012002生产总值(亿元)78345820678944295933102398(Ⅰ)根据已知数据,估计我国2003年的国内生产总值;(Ⅱ)据资料可知我国2003年的国内生产总值为116694亿元,你的预测是否准确,若误差较大,能修正你所构造的模型吗?日照实验高中2004级模块考试(必修1)一、选择题题号123456789101112答案ABDCDDCACADC二、填空题13.{1,3,4,7,8};14.;15.2;16.85.三、解答题17.解:由A={1,2,x2-5x+9}={1,2,3},知x2-5x+9=3,解得x=2或x=3,又2∈B,则x2+ax+a=2,当x=2时,a=32,当x=3时,a=47.故a=32或47.18.解:(Ⅰ)由于MN,则21521211aaaa,解得a∈Φ.(Ⅱ)①当N=Φ时,即a+1>2a-1,有a<2;②当N≠Φ,则21521211aaaa,解得2≤a≤3,综合①②得a的取值范围为a≤3.19.解:由于长方体蓄水池的容积为8立方米,深为2米,因此其底面积为4平方米,设底面一边长为x米,则另一边长为4x米,又因为池壁的造价为每平方米100元,而池壁的面积为2(2x+2·4x)平方米,因此池壁的总造价为100·2(2x+2·4x),而池底的造价为每平方米300元,池底的面积为4平方米,因此池底的总造价为1200元,故蓄水池的总造价为:y=100·2(2x+2·4x)+1200=400·(x+4x)+1200(x>0).20.解:(Ⅰ)由f(1+x)=f(1-x)得,(1+x)2+a(1+x)+b=(1-x)2+a(1-x)+b,整理得:(a+2)x=0,由于对任意的x都成立,∴a=-2.(Ⅱ)根据(Ⅰ)可知f(x)=x2-2x+b,下面证明函数f(x)在区间[1,+∞)上是增函数.设121xx,则12()()fxfx=(2112xxb)-(2222xxb)=(2212xx)-2(12xx)=(12xx)(12xx-2)∵121xx,则12xx>0,且12xx-2>2-2=0,∴12()()fxfx>0,即12()()fxfx,故函数f(x)在区间[1,+∞)上是增函数.21.解:(Ⅰ)y=5x2+25(100—x)2(10≤x≤90);(Ⅱ)由y=5x2+25(100—x)2=152x2-500x+25000=15221003x+500003.则当x=1003米时,y最小.故当核电站建在距A城1003米时,才能使供电费用最小.22.解:(Ⅰ)本小题只要能建立一个正确的数学模型即可给分(例如根据两点得出直线方程等).下面利用excel给出几个模型,供参考:(1)直线型:y=6197.2x+71045R2=0.99150200004000060000800001000001200000246直线型:将x=6代入y=6197.2x+71045中得2003年的国内生产总值为108228.2亿元.(2)二次函数型:y=328.71x2+4224.9x+73346R2=0.99540200004000060000800001000001200000246二次函数型:将x=6代入y=328.71x2+4224.9x+73346中得2003年的国内生产总值为110529亿元.(3)四次函数型:y=224.79x4-3004.1x3+14231x2-21315x+88208R2=10200004000060000800001000001200000246四次函数型:将x=6代入y=224.79x4-3004.1x3+14231x2-21315x+88208中得2003年的国内生产总值为115076.2亿元.(4)指数函数型:y=72492e0.0692xR2=0.99390200004000060000800001000001200000246指数函数型:将x=6代入y=72492e0.0692x中得2003年的国内生产总值为109797亿元.(5)幂函数型:y=76113x0.1658R2=0.92260200004000060000800001000001200000246幂函数型:将x=6代入y=76113x0.1658中得2003年的国内生产总值为102441.6亿元.(Ⅱ)从以上的5个模型可以看成,四次函数型最接近2003年的实际国内生产总值,其实从其R2值也可以看成,因为四次函数型中R2=1.根据自己所建模型予以调整.
本文标题:日照实验高中2004级模块考试(必修1)
链接地址:https://www.777doc.com/doc-7422446 .html