您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 四川省资阳市安岳县2019届九年级上学期期末教学质量监测数学试题
四川省资阳市安岳县2019届九年级上学期期末教学质量监测数学试题一、选择题(每小题4分,共40分)1.下列对于二次根式的计算正确的是()A.B.2=2C.2=2D.2=2.下表记录了一名球员在罚球线上投篮的结果,这么球员投篮一次,投中的概率约是()投篮次数1050100150200250300500投中次数4356078104123152251投中频率0.400.700.600.520.520.490.510.50A.0.7B.0.6C.0.5D.0.43.在平面直角坐标系中,抛物线y=﹣(x﹣1)2+2的顶点坐标是()A.(﹣1,2)B.(1,2)C.(2,﹣1)D.(2,1)4.某班一物理科代表在老师的培训后学会了某个物理实验操作,回到班上后第一节课教会了若干名同学,第二节课会做该实验的同学又教会了同样多的同学,这样全班共有36人会做这个实验;若设1人每次都能教会x名同学,则可列方程为()A.x+(x+1)x=36B.1+x+(1+x)x=36C.1+x+x2=36D.x+(x+1)2=365.下列命题不一定成立的是()A.斜边与一条直角边对应成比例的两个直角三角形相似B.两个等腰直角三角形相似C.两边对应成比例且有一个角相等的两个三角形相似D.各有一个角等于97°的两个等腰三角形相似6.函数y=ax+1与y=ax2+bx+1(a≠0)的图象可能是()A.B.C.D.7.如图1,在Rt△ABC中,∠B=90°,∠ACB=45°,延长BC到D,使CD=AC,则tan22.5°=()A.B.C.D.8.关于x的方程(m﹣2)x2﹣4x+1=0有实数根,则m的取值范围是()A.m≤6B.m<6C.m≤6且m≠2D.m<6且m≠29.如图,在△ABC中,BD、CE是角平分线,AM⊥BD于点M,AN⊥CE于点N.△ABC的周长为30,BC=12.则MN的长是()A.15B.9C.6D.310.如图,在正方形ABCD中,点E是CD的中点,点F是BC上的一点,且BF=3CF,连接AE、AF、EF,下列结论:①△ADE∽△ECF,②∠DAE=∠EAF,③AE2=AD•AF,④S△AEF=5S△ECF,其中正确结论的个数是()A.1个B.2个C.3个D.4个二、填空题.(每小题4分,共24分)11.抛物线y=2x2+3x+k﹣2经过点(﹣1,0),那么k=.12.将分别标有“柠”“檬”“之”“乡”汉字的四个小球装在一个不透明的口袋中,这些球除汉字外无其它差别,每次摸球前先搅拌均匀.随机摸出一球不放回;再随机摸出一球,两次摸出的球上的汉字能组成“柠檬”的概率是.13.在△ABC中,∠A、∠B为锐角,且|tanA﹣1|+(﹣cosB)2=0,则∠C=°.14.如图,在平面直角坐标系中,正方形ABCD与正方形BEFG是以原点O为位似中心的位似图形,且相似比为1:3,点A、B、E在x轴上.若正方形BEFG的边长为6,则点G的坐标为.15.已知一个直角三角形的两条直角边的长是方程2x2﹣10x+9=0的两个实数根,则这个直角三角形的斜边长是.16.△ABC是一张等腰直角三角形纸板,∠C=90°,AC=BC=2,在这张纸板中剪出一个尽可能大的正方形称为第1次剪取,记所得正方形面积为S1(如图1);在余下的Rt△ADE和Rt△BDF中,分别剪取一个尽可能大的正方形,得到两个相同的正方形,称为第2次剪取,并记这两个正方形面积和为S2(如图2);继续操作下去…;第2019次剪取后,余下的所有小三角形的面积之和是.三、解答题(共8个小题,共86分)17.(9分)(1)计算:()﹣1+4cos60°﹣(3.14﹣π)0+(2)解方程:﹣x﹣2=018.(10分)已知a=,求的值.19.(10分)如图,为测量学校旗杆AB的高度,小明从旗杆正前方6米处的点C出发,沿坡度为i=1::的斜坡CD前进2米到达点D,在点D处放置测角仪DE,测得旗杆顶部A的仰角为30°,量得测角仪DE的高为1.5米.A、B、C、D、E在同一平面内,且旗杆和测角仪都与地面垂直.(1)求点D的铅垂高度(结果保留根号);(2)求旗杆AB的高度(结果保留根号).20.(10分)某校在一次大课间活动中,采用了四种活动形式:A、跑步,B、跳绳,C、做操,D、游戏.全校学生都选择了一种形式参与活动,小杰对同学们选用的活动形式进行了随机抽样调查,根据调查统计结果,绘制了不完整的统计图.请结合统计图,回答下列问题:(1)本次调查学生共人,a=,并将条形图补充完整;(2)如果该校有学生2000人,请你估计该校选择“跑步”这种活动的学生约有多少人?(3)学校让每班在A、B、C、D四种活动形式中,随机抽取两种开展活动,请用树状图或列表的方法,求每班抽取的两种形式恰好是“跑步”和“跳绳”的概率.21.(11分)在水果销售旺季,某水果店购进一优质水果,进价为20元/千克,售价不低于20元/千克,且不超过32元/千克,根据销售情况,发现该水果一天的销售量y(千克)与该天的售价x(元/千克)满足如下表所示的一次函数关系.销售量y(千克)…34.83229.628…售价x(元/千克)…22.62425.226…(1)某天这种水果的售价为23.5元/千克,求当天该水果的销售量.(2)如果某天销售这种水果获利150元,那么该天水果的售价为多少元?22.(11分)关于x的一元二次方程x2﹣(2k﹣1)x+k2﹣2k+2=0有两个不相等的实数根.(1)求实数k的取值范围;(2)设方程的两个实数根分别为x1,x2.是否存在这样的实数k,使得|x1|﹣|x2|=?若存在,求出这样的k值;若不存在,说明理由.23.(12分)如图,在等腰直角△ABC中,∠ACB=90°,AC=BC,CD是中线,一个以点D为顶点的45°角绕点D旋转,使角的两边分别与AC、BC的延长线相交,交点分别为点E、F,DF与AC交于点M,DE与BC交于点N.(1)如图1,若CE=CF,求证:DE=DF(2)在∠EDF绕点D旋转过程中:①如图2,探究三条线段AB、CE、CF之间的数量关系,并说明理由;②如图3,过点D作DG⊥BC于点G.若CE=4,CF=2,求DN的长.24.(13分)如图,直线y=﹣x+分别与x轴、y轴交于B、C两点,点A在x轴上,∠ACB=90°,抛物线y=ax2+bx+经过A,B两点.(1)求A、B两点的坐标;(2)求抛物线的解析式;(3)点M是直线BC上方抛物线上的一点,过点M作MH⊥BC于点H,作MD∥y轴交BC于点D,求△DMH周长的最大值.参考答案一、选择题1.下列对于二次根式的计算正确的是()A.B.2=2C.2=2D.2=【分析】根据二次根式的加减法对A、B进行判断;根据二次根式的除法法则对C进行判断;根据二次根式的乘法法则对D进行判断.【解答】解:A、与不能合并,所以A选项错误;B、原式=,所以B选项错误;C、原式=2,所以C选项正确;D、原式=6,所以D选项错误.故选:C.【点评】本题考查了二次根式的混合运算:先把各二次根式化简为最简二次根式,然后进行二次根式的乘除运算,再合并即可.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.2.下表记录了一名球员在罚球线上投篮的结果,这么球员投篮一次,投中的概率约是()投篮次数1050100150200250300500投中次数4356078104123152251投中频率0.400.700.600.520.520.490.510.50A.0.7B.0.6C.0.5D.0.4【分析】计算出所有投篮的次数,再计算出总的命中数,继而可估计出这名球员投篮一次,投中的概率.【解答】解:由题意得:投篮的总次数是10+50+100+150+200+250+300+500=1560(次),投中的总次数是4+35+60+78+104+123+152+251=807(次),则这名球员投篮的次数为1560次,投中的次数为807,故这名球员投篮一次,投中的概率约为:≈0.5.故选:C.【点评】此题考查了利用频率估计概率的知识,注意这种概率的得出是在大量实验的基础上得出的,不能单纯的依靠几次决定.3.在平面直角坐标系中,抛物线y=﹣(x﹣1)2+2的顶点坐标是()A.(﹣1,2)B.(1,2)C.(2,﹣1)D.(2,1)【分析】由抛物线解析式可求得答案.【解答】解:∵y=﹣(x﹣1)2+2,∴抛物线顶点坐标为(1,2),故选:B.【点评】本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y=a(x﹣h)2+k中,顶点坐标为(h,k),对称轴为x=h.4.某班一物理科代表在老师的培训后学会了某个物理实验操作,回到班上后第一节课教会了若干名同学,第二节课会做该实验的同学又教会了同样多的同学,这样全班共有36人会做这个实验;若设1人每次都能教会x名同学,则可列方程为()A.x+(x+1)x=36B.1+x+(1+x)x=36C.1+x+x2=36D.x+(x+1)2=36【分析】设1人每次都能教会x名同学,根据两节课后全班共有36人会做这个实验,即可得出关于x的一元二次方程,此题得解.【解答】解:设1人每次都能教会x名同学,根据题意得:1+x+(x+1)x=36.故选:B.【点评】本题考查了由实际问题抽象出一元一次方程,找准等量关系,正确列出一元一次方程是解题的关键.5.下列命题不一定成立的是()A.斜边与一条直角边对应成比例的两个直角三角形相似B.两个等腰直角三角形相似C.两边对应成比例且有一个角相等的两个三角形相似D.各有一个角等于97°的两个等腰三角形相似【分析】根据相似三角形的判定定理进行判定即可.【解答】解:A、斜边与一条直角边对应成比例的两个直角三角形相似一定成立;B、两个等腰直角三角形相似一定成立;C、两边对应成比例且有一个角相等的两个三角形相似不一定成立;D、各有一个角等于97°的两个等腰三角形相似一定成立,故选:C.【点评】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.6.函数y=ax+1与y=ax2+bx+1(a≠0)的图象可能是()A.B.C.D.【分析】根据a的符号,分类讨论,结合两函数图象相交于(0,1),逐一排除;【解答】解:当a>0时,函数y=ax2+bx+1(a≠0)的图象开口向上,函数y=ax+1的图象应在一、二、三象限,故可排除D;当a<0时,函数y=ax2+bx+1(a≠0)的图象开口向下,函数y=ax+1的图象应在一二四象限,故可排除B;当a=0时,两个函数的值都为1,故两函数图象应相交于(0,1),可排除A.正确的只有C.故选:C.【点评】应该识记一次函数y=kx+b在不同情况下所在的象限,以及熟练掌握二次函数的有关性质:开口方向、对称轴、顶点坐标等.7.如图1,在Rt△ABC中,∠B=90°,∠ACB=45°,延长BC到D,使CD=AC,则tan22.5°=()A.B.C.D.【分析】设AB=x,求出BC=x,CD=AD=x,求出BD,再解直角三角形求出即可.【解答】解:设AB=x,∵在Rt△ABC中,∠B=90°,∠ACB=45°,∴∠BAC=∠ACB=45°,∴AB=BC=x,由勾股定理得:AC==x,∵AC=CD,∴AC=CD=x,∴BD=BC+CD=(+1)x,∴tan22.5°===﹣1,故选:B.【点评】本题考查了解直角三角形、勾股定理、等腰三角形的性质和判定等知识点,能求出BD=(+1)x是解此题的关键.8.关于x的方程(m﹣2)x2﹣4x+1=0有实数根,则m的取值范围是()A.m≤6B.m<6C.m≤6且m≠2D.m<6且m≠2【分析】当m﹣2=0,关于x的方程(m﹣2)x2﹣4x+1=0有一个实数根,当m﹣2≠0时,列不等式即可得到结论.【解答】解:当m﹣2=0,即m=2时,关于x的方程(m﹣2)x2﹣4x+1=0有一个实数根,当m﹣2≠0时,∵关于x的方程(m﹣2)x2﹣4x+1=0有实数根,∴△=(﹣
本文标题:四川省资阳市安岳县2019届九年级上学期期末教学质量监测数学试题
链接地址:https://www.777doc.com/doc-7425965 .html