您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 2017-2018学年高中数学人教A版选修1-2创新应用课下能力提升(四) Word版含解析
课下能力提升(四)[学业水平达标练]题组1用三段论表示演绎推理1.“所有金属都能导电,铁是金属,所以铁能导电”这种推理方法属于()A.演绎推理B.类比推理C.合情推理D.归纳推理2.“因为四边形ABCD是矩形,所以四边形ABCD的对角线相等”,补充以上推理的大前提是()A.正方形都是对角线相等的四边形B.矩形都是对角线相等的四边形C.等腰梯形都是对角线相等的四边形D.矩形都是对边平行且相等的四边形3.下面几种推理中是演绎推理的是()A.因为y=2x是指数函数,所以函数y=2x经过定点(0,1)B.猜想数列11×2,12×3,13×4,…的通项公式为an=1nn+1(n∈N*)C.由“平面内垂直于同一直线的两直线平行”类比推出“空间中垂直于同一平面的两平面平行”D.由平面直角坐标系中圆的方程为(x-a)2+(y-b)2=r2,推测空间直角坐标系中球的方程为(x-a)2+(y-b)2+(z-c)2=r2题组2用三段论证明几何问题4.有一段演绎推理是这样的:“若一直线平行于平面,则该直线平行于平面内所有直线;已知直线b⊄平面α,直线a⊂平面α,直线b∥平面α,则直线b∥直线a”的结论显然是错误的,这是因为()A.大前提错误B.小前提错误C.推理形式错误D.非以上错误5.如图,在平行四边形ABCD中,∠DAB=60°,AB=2,AD=4.将△CBD沿BD折起到△EBD的位置,使平面EDB⊥平面ABD.求证:AB⊥DE.6.如图所示,三棱锥ABCD的三条侧棱AB,AC,AD两两互相垂直,O为点A在底面BCD上的射影.求证:O为△BCD的垂心.题组3用三段论证明代数问题7.用三段论证明命题:“任何实数的平方大于0,因为a是实数,所以a2>0”,你认为这个推理()A.大前提错误B.小前提错误C.推理形式错误D.是正确的8.已知推理:“因为△ABC的三边长依次为3,4,5,所以△ABC是直角三角形”.若将其恢复成完整的三段论,则大前提是________.9.已知函数f(x)对任意x,y∈R都有f(x+y)=f(x)+f(y),且当x>0时,f(x)<0,f(1)=-2.(1)求证:f(x)为奇函数;(2)求f(x)在[-3,3]上的最大值和最小值.[能力提升综合练]1.下面几种推理过程是演绎推理的是()A.两条直线平行,同旁内角互补,如果∠A与∠B是两条平行直线的同旁内角,则∠A+∠B=180°B.某校高三1班有55人,2班有54人,3班有52人,由此得高三所有班人数超过50人C.由三角形的性质,推测四面体的性质D.在数列{an}中,a1=1,an=12an-1+1an-1(n≥2),由此归纳出an的通项公式2.“所有9的倍数(M)都是3的倍数(P),某奇数(S)是9的倍数(M),故该奇数(S)是3的倍数(P).”上述推理是()A.小前提错误B.结论错误C.正确的D.大前提错误A.直角梯形B.矩形C.正方形D.菱形4.设⊕是R内的一个运算,A是R的非空子集.若对于任意a,b∈A,有a⊕b∈A,则称A对运算⊕封闭.下列数集对加法、减法、乘法和除法(除数不等于零)四则运算都封闭的是()A.自然数集B.整数集C.有理数集D.无理数集5.设函数f(x)是定义在R上的奇函数,且y=f(x)的图象关于直线x=12对称,则f(1)+f(2)+f(3)+f(4)+f(5)=________.6.关于函数f(x)=lgx2+1|x|(x≠0),有下列命题:①其图象关于y轴对称;②当x>0时,f(x)是增函数;当x<0时,f(x)为减函数;③f(x)的最小值是lg2;④当-1<x<0或x>1时,f(x)是增函数;⑤f(x)无最大值,也无最小值.其中所有正确结论的序号是________.7.已知2sin2α+sin2β=3sinα,求sin2α+sin2β的取值范围.8.已知a,b,c是实数,函数f(x)=ax2+bx+c,g(x)=ax+b.当-1≤x≤1时,|f(x)|≤1.(1)求证:|c|≤1;(2)当-1≤x≤1时,求证:-2≤g(x)≤2.答案[学业水平达标练]1.答案:A2.答案:B3.解析:选AA是演绎推理,B是归纳推理,C,D是类比推理.4.解析:选A“直线与平面平行”,不能得出“直线平行于平面内的所有直线”,即大前提错误.5.证明:在△ABD中,∵AB=2,AD=4,∠DAB=60°,∴BD=AB2+AD2-2AB·ADcos∠DAB=23.∴AB2+BD2=AD2.∴AB⊥BD.又平面EBD⊥平面ABD,平面EBD∩平面ABD=BD,AB⊂平面ABD,∴AB⊥平面EBD.∵DE⊂平面EBD,∴AB⊥DE.6.证明:如图,连接BO,CO,DO.∵AB⊥AD,AC⊥AD,AB∩AC=A,∴AD⊥平面ABC.又BC⊂平面ABC,∴AD⊥BC.∵AO⊥平面BCD,∴AO⊥BC,又AD∩AO=A,∴BC⊥平面AOD,∴BC⊥DO,同理可证CD⊥BO,∴O为△BCD的垂心.7.解析:选A这个三段论推理的大前提是“任何实数的平方大于0”,小前提是“a是实数”,结论是“a2>0”.显然结论错误,原因是大前提错误.8.解析:大前提:一条边的平方等于其他两条边的平方和的三角形是直角三角形;小前提:△ABC的三边长依次为3,4,5,满足32+42=52;结论:△ABC是直角三角形.答案:一条边的平方等于其他两条边的平方和的三角形是直角三角形9.解:(1)证明:因为x,y∈R时,f(x+y)=f(x)+f(y),所以令x=y=0得,f(0)=f(0)+f(0)=2f(0),所以f(0)=0.令y=-x,则f(x-x)=f(x)+f(-x)=0,所以f(-x)=-f(x),所以f(x)为奇函数.(2)设x1,x2∈R,且x1<x2,f(x2)-f(x1)=f(x2)+f(-x1)=f(x2-x1),因为当x>0时,f(x)<0,所以f(x2-x1)<0,即f(x2)-f(x1)<0,所以f(x)为减函数,所以f(x)在[-3,3]上的最大值为f(-3),最小值为f(3).因为f(3)=f(2)+f(1)=3f(1)=-6,f(-3)=-f(3)=6,所以函数f(x)在[-3,3]上的最大值为6,最小值为-6.[能力提升综合练]1.解析:选AB项是归纳推理,C项是类比推理,D项是归纳推理.2.答案:C3.4.解析:选CA错:因为自然数集对减法和除法不封闭;B错:因为整数集对除法不封闭;C对:因为任意两个有理数的和、差、积、商都是有理数,故有理数集对加、减、乘、除法(除数不等于零)四则运算都封闭;D错:因为无理数集对加、减、乘、除法都不封闭.5.解析:由题意,知f(0)=0,f(1)=f(0)=0,f(2)=f(-1)=0,f(3)=f(-2)=0,f(4)=f(-3)=0,f(5)=f(-4)=0,故f(1)+f(2)+f(3)+f(4)+f(5)=0.答案:06.解析:∵f(x)是偶函数,∴①正确;当x>0时,f(x)=lgx2+1x=lgx+1x≥lg2,当且仅当x=1时取等号,∴0<x<1时,f(x)为减函数;x>1时,f(x)为增函数.x=1时取得最小值lg2.又f(x)为偶函数,∴-1<x<0时,f(x)为增函数;x<-1时,f(x)为减函数.x=-1时取得最小值lg2.∴③④也正确.答案:①③④7.解:由2sin2α+sin2β=3sinα,得sin2α+sin2β=-sin2α+3sinα=-sinα-322+94,且sinα≥0,∵0≤sin2β≤1,sin2β=3sinα-2sin2α,∴0≤3sinα-2sin2α≤1.解得sinα=1或0≤sinα≤12.令y=sin2α+sin2β,当sinα=1时,y=2;当0≤sinα≤12时,0≤y≤54,∴sin2α+sin2β的取值范围是0,54∪{2}.8.证明:(1)因为x=0满足-1≤x≤1的条件,所以|f(0)|≤1.而f(0)=c,所以|c|≤1.(2)当a>0时,g(x)在[-1,1]上是增函数,所以g(-1)≤g(x)≤g(1).又g(1)=a+b=f(1)-c,g(-1)=-a+b=-f(-1)+c,所以-f(-1)+c≤g(x)≤f(1)-c,又-1≤f(-1)≤1,-1≤f(1)≤1,-1≤c≤1,所以-f(-1)+c≥-2,f(1)-c≤2,所以-2≤g(x)≤2.当a<0时,可用类似的方法,证得-2≤g(x)≤2.当a=0时,g(x)=b,f(x)=bx+c,g(x)=f(1)-c,所以-2≤g(x)≤2.综上所述,-2≤g(x)≤2.
本文标题:2017-2018学年高中数学人教A版选修1-2创新应用课下能力提升(四) Word版含解析
链接地址:https://www.777doc.com/doc-7460499 .html