您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 重庆市西南师大附中2010届高三第四次月考文科数学2009.12
重庆市西南师大附中2010届高三第四次月考数学试题(文)2009年12月(满分:150分时间:120分钟)一、选择题(每小题5分,共50分)1.设A={(x,y)|x–y=6},B={(x,y)|3x+2y=7},满足CAB的集合C的个数为()A.0B.1C.2D.42.已知a=(–2,1),b=(–1,2),而(λa+b)⊥(a–λb),则λ等于()A.1或2B.2或21C.1或–1D.–1或23.直线260axy与直线2(1)(1)0xaya平行,则a等于()A.-1或2B.2C.-1D.234.若110ab,则下列结论不正确的是()A.22abB.2abbC.2baabD.||||||abab5.不等式2821()33xx的解集是()A.(–2,4)B.(,–2)C.(4,)D.(,–2)(4,)6.可行域A:10400,0xyxyxy与可行域B:04502xy的关系是()A.ABB.BAC.BÜAD.AÜB7.直线l在x轴与y轴上的截距相等,且点P(3,4)到直线l的距离恰好为4,则满足条件的直线有()A.1条B.4条C.2条D.3条8.已知当Rx时,函数()yfx满足1(2.5)(1.5)3fxfx,且4(1)3f,则(2010)f的值为()A.20103B.20143C.671D.2689.三个实数x、y、z成等比数列,若x+y+z=1成立,则y取值范围是()A.[31,+∞)(,–1]B.[–1,0)(0,31]C.[–31,0]D.[–31,0)(0,1]10.设S是ABC的面积,角A、B、C的对边分别为a、b、c,且2sin()sinSABABCB,则()A.ABC是钝角三角形B.ABC是锐角三角形C.ABC可能为钝角三角形,也可能为锐角三角形D.无法判断二、填空题(每小题5分,共25分)11.不等式(3)50xx的解集为______________.12.已知函数2()3sin(2)2sin()()612fxxxxR,则函数()fx的最小正周期为________________.13.ABC的三内角A、B、C所对边的长分别为a、b、c,设向量(,)pacb,(,)qbaca,若//pq,则角C的大小为.14.设x,y,z满足约束条件组1010232xyzxyxz则t=5x+6y+4z的最大值为.15.过△ABO的重心G的直线与OA、OB两边分别交于P、Q两点,且此直线不与AB边平行,设OP=mOA,OQ=nOB,求11mn的值.三、解答题(共75分)16.(12分)在△ABC中,|AB|=|AC|,∠A=120°,A(0,2),BC所在直线方程为3x-y-1=0,求边AB、AC所在直线方程.17.(12分)已知向量a与b的夹角为30°,且|a|=3,|b|=1,(1)求|a-2b|的值;(2)设向量p=a+2b,q=a-2b,求向量p在q方向上的投影.18.(12分)已知mR,2(1,)axm,1(1,)bmx,(,)xcmxm.(1)当1m时,求使不等式1ac成立的x的取值范围;(2)当m1时,求使不等式0ab成立的x的取值范围.19.(13分)已知函数xxf)(,axxg)((a0)(1)求a的值,使点M()(xf,)(xg)到直线01yx的最短距离为2;(2)若不等式1)()()(xfxagxf在x[1,4]恒成立,求a的取值范围.20.(13分)已知点A,B的坐标分别是(0,–1),(0,1),直线AM,BM相交于点M,且它们的斜率之积为12.(1)求点M的轨迹C的方程;(2)过D(2,0)的直线l与轨迹C有两个不同的交点时,求l的斜率的取值范围;(3)若过D(2,0),且斜率为146的直线l与(1)中的轨迹C交于不同的E、F(E在D、F之间),求ODE与ODF的面积之比.21.(13分)已知曲线C:2()nfxxAA上的点、的横坐标分别为1和(123)nan,,,,且a1=5,数列{xn}满足xn+1=tf(xn–1)+1(t0且112tt,).设区间[1,](1)nnnDaa,当nnxD时,曲线C上存在点(())nnnPxfx,使得xn的值与直线AAn的斜率之半相等.(1)证明:{1log(1)}tnx是等比数列;(2)当1nDÜnD对一切*nN恒成立时,求t的取值范围;(3)记数列{an}的前n项和为Sn,当14t时,试比较Sn与n+7的大小,并证明你的结论.西南师大附中高2010级第四次月考数学试题参考答案(文)2009年12月一、选择题(每小题5分,共50分)1.C2.C3.C4.D5.A6.D7.B8.C9.B10.A二、填空题(每小题5分,共25分)11.{5}[3,)12.13.314.915.3三、解答题(共75分)16.解:由题意得∠B=∠C=30°,设AB边斜率的夹角公式得|313kk|=33从而得k=33···············································································10分又AB斜率不存在时也适合题意∴AB边所在直线方程为y=33x+2和x=0.····································12分17、解:(1)∵|a-2b|=2)2(ba=baba4422=233443=1···6分(2)法一:由(1)可知21qab;2(2)13pab;2241pqab∴qp,cos=pqpq=1313从而在方向上的投影为cos,1ppq··········································12分(法二):∵由(1)可知21qab;cos,ppq=pqppq=1pq18.解:(1)当1m时,2(1,1)ax,(1,)1xcx.2(1)11xxacx21xx.∵211acxx,∴2211,11.xxxx解得21x或01x.∴当1m时,使不等式1ac成立的x的取值范围是2101xxx或.·······························································6分(2)当m=1时,(0,1)(1,)x当m1时,(0,1)(,)xm.················································12分19.解:(1)由题意得M到直线01yx的距离2|1|axxd,令0xt则2|45)21(|2|1|22atattd∵0t∴1a时,215|()|12422taa即t=0时,221minad∴a=310a时,0mind,不合题意综上3a················································································6分(2)由2)()(01)()()(11)()()(xfxagxfxagxfxfxagxf即]4,1[22在xaax上恒成立也就是xaax22在[1,4]上恒成立令0tx,且2tx,]2,1[t由题意0222atat在]2,1[t上恒成立设222)(atatt,则要使上述条件成立,只需)12(20044)2(02)1(22aaaaa即满足条件的a的取值范围是]222,0(····································13分20.解:(1)设点M的坐标为(,)xy,∵12AMBMkk,∴1112yyxx.整理,得2212xy(0x),这就是动点M的轨迹方程.················4分(2)由题意知直线l的斜率存在,设l的方程为2ykx(12k)①将①代入1222yx,得0)28(8)12(2222kxkxk(*)由0,解得211112(,)(,)(,)222222k.·····························8分(3)设11(,)Exy,22(,)Fxy,由2214(2)612yxxy,消x得:281450xx∴112x,254x令||||ODEODFSDESDFDEDF∴122122xx=1∶2······················································13分21.解:(1)∵由已知得∴2112,1.12nnnnnaaxxa即由211)1(1,1)1(nnnnxtxxtfx得∴),1(log21)1(log1ntntxx即].1)1([log21)1(log1ntntxx∴}1)1({logntx是首项为tlog2+1为首项,公比为2的等比数列.·····4分(2)由(1)得1)1(logntx=(tlog2+1)·2n-1,∴1211(2)nnxtt从而an=2xn-1=1+12)2(2ntt,由Dn+1ÜDn,得an+1an,即122(2)(2)nntt.∴02t1,即0t.21····································································9分(3)当41t时,12118()2nna∴])21()21()21(21[81242nnSn不难证明:当n≤3时,2n-1≤n+1;当n≥4时,2n-1n+1.∴当n≤3时,;7213])21()21(21[842nnnSn当n≥4时,])21()21()21()21()21(21[816542nnnS.7)21(72nnn综上所述,对任意的.7*,nSNnn都有····································13分
本文标题:重庆市西南师大附中2010届高三第四次月考文科数学2009.12
链接地址:https://www.777doc.com/doc-7477464 .html