您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 2018-2019学年凉山州西昌市九年级上期中数学模拟试卷(有答案)
2018-2019学年四川省凉山州西昌市九年级(上)期中数学模拟试卷(一)一.选择题(共12小题,满分36分,每小题3分)1.(3分)下列图形中,既是中心对称图形,又是轴对称图形的是()A.B.C.D.2.(3分)抛物线y=3(x﹣1)2+1的顶点坐标是()A.(1,1)B.(﹣1,1)C.(﹣1,﹣1)D.(1,﹣1)3.(3分)抛物线y=x2+4x+5是由抛物线y=x2+1经过某种平移得到,则这个平移可以表述为()A.向左平移1个单位B.向左平移2个单位C.向右平移1个单位D.向右平移2个单位4.(3分)二次函数y=ax2+bx的图象如图,若一元二次方程ax2+bx+k=0有实数解,则k的最小值为()A.﹣4B.﹣6C.﹣8D.0[来源:Z|xx|k.Com]5.(3分)如果二次函数y=ax2+bx+c(a≠0)的图象如图所示,那么下列不等式成立的是()A.a>0B.b<0C.ac<0D.bc<0.6.(3分)等腰三角形的两边长分别是方程x2﹣5x+6=0的两个根,则此三角形的周长为()A.7B.8C.7或8D.以上都不对7.(3分)如图:二次函数y=ax2+bx+2的图象与x轴交于A、B两点,与y轴交于C点,若AC⊥BC,则a的值为()A.﹣B.﹣C.﹣1D.﹣28.(3分)若二次函数y=ax2﹣4ax+c的图象经过点(﹣1,0),则方程ax2﹣4ax+c=0的解为()A.x1=﹣1,x2=﹣5B.x1=5,x2=1C.x1=﹣1,x2=5D.x1=1,x2=﹣59.(3分)如图,函数y=ax2﹣2x+1和y=ax﹣a(a是常数,且a≠0)在同一平面直角坐标系的图象可能是()A.B.C.D.10.(3分)二次函数y=x2﹣x+m(m为常数)的图象如图所示,当x=a时,y<0;那么当x=a﹣1时,函数值()A.y<0B.0<y<mC.y>mD.y=m11.(3分)已知抛物线y=x2﹣(4m+1)x+2m﹣1与x轴交于两点,如果有一个交点的横坐标大于2,另一个交点的横坐标小于2,并且抛物线与y轴的交点在点(0,)的下方,那么m的取值范围是()A.B.C.D.全体实数12.(3分)已知二次函数y=ax2+bx+c(a≠0)的图象如图,在下列代数式中(1)a+b+c>0;(2)﹣4a<b<﹣2a(3)abc>0;(4)5a﹣b+2c<0;其中正确的个数为()A.1个B.2个C.3个D.4个二.填空题(共5小题,满分15分,每小题3分)13.(3分)将二次函数y=x2+6x+5化为y=a(x﹣h)2+k的形式为.14.(3分)已知:m2﹣2m﹣1=0,n2+2n﹣1=0且mn≠1,则的值为.15.(3分)关于x的一元二次方程x2+2x+k=0有两个不相等的实数根,则k的取值范围是.16.(3分)点A(﹣3,y1),B(2,y2),C(3,y3)在抛物线y=2x2﹣4x+c上,则y1,y2,y3的大小关系是.17.(3分)二次函数y=x2+mx+m﹣2的图象与x轴有个交点.三.解答题(共11小题)18.解方程(1)x(x﹣2)+x﹣2=0[来源:学,科,网](2)(x﹣2)(x﹣5)=﹣2.19.已知=,求÷的值.20.已知a,b是方程x2﹣2x﹣1=0的两个实数根,求ab﹣a2+3a+b的值.21.如图,在边长为1个单位长度的小正方形组成的网格中,点A,B都是格点,将△ABO向左平移6个单位长度得到△A1B1O1;将△A1B1O1绕点B1按逆时针方向旋转90°后,得到△A2B2O2,请画出△A1B1O1和△A2B2O2,并直接写出点O2的坐标.22.“国庆”期间,某电影院装修后重新开业,试营业期间统计发现,影院每天售出的电影票张数y(张)与电影票售价x(元/张)之间满足一次函数关系:y=﹣4x+260(30≤x≤60),x是整数,影院每天运营成本为1600元,设影院每天的利润为w(元)(利润=票房收入﹣运营成本).(1)试求w与x之间的函数关系式;(2)影院将电影票售价定为多少时,每天获利最大?最大利润是多少元?23.已知一次函数y1=x﹣1,二次函数y2=x2﹣mx+4(其中m>4).(1)求二次函数图象的顶点坐标(用含m的代数式表示);(2)利用函数图象解决下列问题:①若m=5,求当y1>0且y2≤0时,自变量x的取值范围;②如果满足y1>0且y2≤0时自变量x的取值范围内有且只有一个整数,直接写出m的取值范围.24.阅读材料:为解方程(x2﹣1)2﹣5(x2﹣1)+4=0,我们可以将x2﹣1看作一个整体,设x2﹣1=y…①,[来源:学_科_网]那么原方程可化为y2﹣5y+4=0,解得y1=1,y2=4,当y=1时,x2﹣1=1,∴x2=2,∴;当y=4时,x2﹣1=4,∴x2=5,∴,故原方程的解为,,,.以上解题方法叫做换元法,在由原方程得到方程①的过程中,利用换元法达到了解方程的目的,体现了转化的数学思想;请利用以上知识解方程:(1)x4﹣x2﹣6=0.(2)(x2+x)2+(x2+x)=6.25.在等边三角形ABC中,点P在△ABC内,点Q在△ABC外,且∠ABP=∠ACQ,BP=CQ.(1)求证:△ABP≌△CAQ;(2)请判断△APQ是什么形状的三角形?试说明你的结论.26.已知二次函数y=﹣2x2+4x+6(1)求函数图象的顶点P坐标及对称轴(2)求此抛物线与x轴的交点A、B坐标(3)求△ABP的面积.27.某企业信息部进行市场调研发现:信息一:如果单独投资A种产品,所获利润yA(万元)与投资金额x(万元)之间存在某种关系的部分对应值如下表:x(万元)122.535[来源:学科网]yA(万元)0.40.811.22信息二:如果单独投资B种产品,则所获利润yB(万元)与投资金额x(万元)之间存在二次函数关系:yB=ax2+bx,且投资2万元时获利润2.4万元,当投资4万元时,可获利润3.2万元.(1)求出yB与x的函数关系式;(2)从所学过的一次函数、二次函数、反比例函数中确定哪种函数能表示yA与x之间的关系,并求出yA与x的函数关系式;(3)如果企业同时对A、B两种产品共投资15万元,请设计一个能获得最大利润的投资方案,并求出按此方案能获得的最大利润是多少?[来源:Zxxk.Com]28.如图所示,已知抛物线经过点A(﹣2,0)、B(4,0)、C(0,﹣8),抛物线y=ax2+bx+c(a≠0)与直线y=x﹣4交于B、D两点.(1)求抛物线的解析式并直接写出D点的坐标;(2)点P为抛物线上的一个动点,且在直线BD下方,试求出△BDP面积的最大值及此时点P的坐标;(3)点Q是线段BD上异于B、D的动点,过点Q作QF⊥x轴于点F,交抛物线于点G,当△QDG为直角三角形时,求点Q的坐标.参考答案一.选择题1.C;2.A;3.B;4.A;5.C;6.C;7.A;8.C;9.B;10.C;11.A;12.A;二.填空题13.y=(x+3)2﹣4;14.3;15.k<1;16.y2<y3<y1;17.2;三.解答题略
本文标题:2018-2019学年凉山州西昌市九年级上期中数学模拟试卷(有答案)
链接地址:https://www.777doc.com/doc-7495739 .html