您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 第8章二元一次方程组单元测试含答案解析(期末考题好题精选)
第8章二元一次方程组期末考题好题精选训练一、选择题1.早餐店里,李明妈妈买了5个馒头,3个包子,老板少要1元,只要10元;王红爸爸买了8个馒头,6个包子,老板九折优惠,只要18元.若馒头每个x元,包子每个y元,则所列二元一次方程组正确的是()A.B.C.D.2.已知是方程组的解,则a+b+c的值是()A.3B.2C.1D.无法确定3.(河北省中考)根据图中提供的信息,可知一个杯子的价格是()A.51元B.35元C.8元D.7.5元4.按如图的运算程序,能使输出结果为3的x,y的值是()A.x=5,y=﹣2B.x=3,y=﹣3C.x=﹣4,y=2D.x=﹣3,y=﹣95.小明在拼图时,发现8个一样大小的长方形,恰好可以拼成一个大的长方形如图(1);小红看见了,说:“我也来试一试.”结果小红七拼八凑,拼成了如图(2)那样的正方形,中间还留下了一个洞,恰好是边长为3mm的小正方形,则每个小长方形的面积为()A.120mm2B.135mm2C.108mm2D.96mm26.从甲地到乙地有一段上坡与一段平路.如果保持上坡每小时走3km,平路每小时走4km,下坡每小时走5km,那么从甲地到乙地需54min,从乙地到甲地需42min.设从甲地到乙地上坡与平路分别为xkm,ykm,依题意,所列方程组正确的是()A.B.C.D.7.(潍坊中考)为了研究吸烟是否对肺癌有影响,某肿瘤研究所随机地抽查了10000人,并进行统计分析.结果显示:在吸烟者中患肺癌的比例是2.5%,在不吸烟者中患肺癌的比例是0.5%,吸烟者患肺癌的人数比不吸烟者患肺癌的人数多22人.如果设这10000人中,吸烟者患肺癌的人数为x,不吸烟者患肺癌的人数为y,根据题意,下面列出的方程组正确的是()A.B.C.D.二、填空题8.方程组经“消元”后可得到一个关于x、y的二元一次方程组为..9.小东将书折过来,该角顶点A落在F处,BC为折痕,如图所示,若DB平分∠FBE,∠DBE比∠CBA大30°,设∠CBA和∠DBE分别为x°、y°,那么可求出这两个角的度数的方程组是.10.小菲受《乌鸦喝水》故事的启发,利用量筒和体积相同的小球进行了如下操作,请根据图中给出的信息,量筒中至少放入小球时有水溢出.11.单项式3x2m+3ny8与﹣2x2y3m+2n是同类项,则m+n=.12.(乌兰察布中考)对于X、Y定义一种新运算“*”:X*Y=aX+bY,其中a、b为常数,等式右边是通常的加法和乘法的运算.已知:3*5=15,4*7=28,那么2*3=.13.4个数a,b,c,d排列成,我们称之为二阶行列式.规定它的运算法则为:=ad﹣bc.若=13,则x=.14.(温州市中考)有一条长度为359mm的铜管料,把它锯成长度分别为59mm和39mm两种不同规格的小铜管(要求没有余料),每锯一次损耗1mm的铜管料,为了使铜管料的损耗最少,应分别锯成59mm的小铜管段,39mm的小铜管段.15.某班去看演出,甲种票每张24元,乙种票每张18元,如果35名学生购票恰好用去750元,那么甲种票买了张,乙种票买了张.16.已知关于x,y的二元一次方程组的解为,那么关于m,n的二元一次方程组的解为.17.2015年5月18日华中旅游博览会在汉召开.开幕式上用到甲、乙、丙三种造型的花束,甲种花束由3朵红花、2朵黄花和1朵紫花搭配而成,乙种花束由2朵红花和2朵黄花搭配而成,丙种花束由2朵红花、1朵黄花和1朵紫花搭配而成.这些花束一共用了580朵红花,150朵紫花,则黄花一共用了朵.三、解答题18.已知:4x﹣3y﹣6z=0,x+2y﹣7z=0,且x,y,z都不为零.求的值.19.在矩形ABCD中,放入六个形状、大小相同的长方形,所标尺寸如图所示.试求图中阴影部分的总面积(写出分步求解的简明过程)20.解方程组若设(x+y)=A,(x﹣y)=B,则原方程组可变形为,解方程组得,所以解方程组得,我们把某个式子看成一个整体,用一个字母去代替它,这种解方程组的方法叫换元法,请用这种方法解方程组.21.已知二元一次方程x+3y=10(1)直接写出它所有的正整数解;(2)请你写出一个二元一次方程,使它与已知方程组成的方程组的解为.22.(武汉市中考)小明家准备装修一套新住房,若甲、乙两个装饰公司,合做需6周完成,需工钱5.2万元;若甲公司单独做4周后,剩下的由乙公司来做,还需9周才能完成,需工钱4.8万元,若只选一个公司单独完成,从节约开支角度考虑,小明家是选甲公司、还是乙公司请你说明理由.23.在解关于x、y的方程组时,可以用①×2﹣②消去未知数x,也可以用①×4+②×3消去未知数y,试求a、b的值.24.甲乙两人解方程组.由于甲看错了方程①中的m的值,得到方程组的解为,乙看错了方程②中的n的值,得到方程组的解为,试求m2+n2+mn的值.25.已知2台大收割机和5台小收割机同时工作2h共收割小麦3.6hm2,3台大收割机和2台小收割机同时工作5h共收割小麦8hm2.求1台大收割机和1台小收割机每小时各收割小麦多少公顷(hm2)?(1)分析:如果设1台大收割机每小时各收割小麦xhm2,和1台小收割机每小时各收割小麦yhm2,则2台大收割机和5台小收割机同时工作1h共收割小麦hm2,3台大收割机和2台小收割机同时工作1h共收割小麦hm2(均用含x,y的代数式表示);(2)根据以上分析,结合题意,请你列出方程组,求出1台大收割机和1台小收割机每小时各收割小苗多少公顷(hm2)?26.(1)阅读以下内容:已知实数x,y满足x+y=2,且求k的值.三位同学分别提出了以下三种不同的解题思路:甲同学:先解关于x,y的方程组,再求k的值.乙同学:先将方程组中的两个方程相加,再求k的值.丙同学:先解方程组,再求k的值.(2)你最欣赏(1)中的哪种思路?先根据你所选的思路解答此题,再对你选择的思路进行简要评价.(评价参考建议:基于观察到题目的什么特征设计的相应思路,如何操作才能实现这些思路、运算的简洁性,以及你依此可以总结什么解题策略等等)请先在以下相应方框内打勾,再解答相应题目.27.(河南省中考)某旅行社拟在暑假期间面向学生推出“林州红旗渠一日游”活动,收费标准如下:人数m0<m≤100100<m≤200m>200收费标准(元/人)908575甲、乙两所学校计划组织本校学生自愿参加此项活动.已知甲校报名参加的学生人数多于100人,乙校报名参加的学生人数少于100人.经核算,若两校分别组团共需花费20800元,若两校联合组团只需花费18000元.(1)两所学校报名参加旅游的学生人数之和超过200人吗?为什么?(2)两所学校报名参加旅游的学生各有多少人?参考答案一、选择题1.解:若馒头每个x元,包子每个y元,由题意得:,故选:B.2.解:由题意将代入方程组得:,①+②+③得:a+2b+2b+3c+c+3a=2+3+7,即4a+4b+4c=4(a+b+c)=12,则a+b+c=3.故选A.3.解:设一杯为x,一杯一壶为43元,则右图为三杯两壶,即二杯二壶+一杯,即:43×2+x=94解得:x=8(元)故选C.4.解:由题意得,2x﹣y=3,A、x=5时,y=7,故A选项错误;B、x=3时,y=3,故B选项错误;C、x=﹣4时,y=﹣11,故C选项错误;D、x=﹣3时,y=﹣9,故D选项正确.故选:D.5.解:设每个长方形的长为xmm,宽为ymm,由题意,得,解得:.9×15=135(mm2).故选:B.6.解:设从甲地到乙地上坡与平路分别为xkm,ykm,由题意得:,故选:A.7.解:设吸烟者患肺癌的人数为x,不吸烟者患肺癌的人数为y,根据题意得:.故选:B.二、填空题8.解:,①+③得x+3y=6④,由②④组成方程组得.故答案为.9.解:设∠CBA和∠DBE分别为x°、y°,根据题意,可列方程组:,故答案为:.10.解:设放入球后量桶中水面的高度y(cm)与小球个数x(个)之间的一次函数关系式为y=kx+b,由题意,得:,解得:,即y=2x+30;由2x+30>49,得x>9.5,即至少放入10个小球时有水溢出.故答案为:10.11.解:由题意得:,①+②得:5m+5n=10,m+n=2,故答案为:2.12.解:∵X*Y=aX+bY,3*5=15,4*7=28,∴3a+5b=15①4a+7b=28②,②﹣①=a+2b=13③,①﹣③=2a+3b=2,而2*3=2a+3b=2.13.解:∵=13,∴(x﹣2)(x﹣2)﹣(x+3)(x+1)=13,x2﹣4x+4﹣x2﹣4x﹣3=13,﹣8x=12,解得,x=﹣,故答案为:﹣.14.解:设应分别锯成59mm的小铜管x段,39mm的小铜管y段.那么损耗的钢管料应是1×(x+y﹣1)=x+y﹣1(mm).根据题意得:59x+39y+x+y﹣1=359,x=6﹣y.由于x、y都必须是正整数,因此x=4,y=3,x+y﹣1=6;x=2,y=6,x+y﹣1=7;因此据此4段59mm的小钢管最省.15.解:设甲种票买x张,乙种票买y张,根据题意,得:,解得:.即:甲种票买20张,乙种票买15张.故选:20;15.16.解:∵关于x,y的二元一次方程组的解为,∴,∴,解得,故答案为:.17.解:设步行街摆放有甲、乙、丙三种造型的盆景分别有x盆、y盆、z盆.由题意,有,把②代入①得:x+2y=280.所以2x+2y+z=(x+z)+(x+2y)=150+280=430(朵).即黄花一共用了430朵.故答案是:430.三、解答题18.解:解关于x、y的二元一次方程组得,把x=3z,y=2z代入得原式==.19.解:设小长方形的长为x,宽为y,如图可知,x+3y=14,①x+y﹣2y=6,即x﹣y=6,②①﹣②得4y=8,y=2,代入②得x=8,因此,大矩形ABCD的宽AD=6+2y=6+2×2=10.矩形ABCD面积=14×10=140(平方厘米),阴影部分总面积=140﹣6×2×8=44(平方厘米).20.解:设x+y=A,x﹣y=B,方程组变形得:,整理得:,①×3+②×2得:13A=156,即A=12,把A=12代入②得:B=0,∴,解得:.21.解:(1)方程x+3y=10,解得:x=﹣3y+10,当y=1时,x=7;当y=2时,x=4;当y=3时,x=1,则方程的正整数解为;;;(2)根据题意得:2x+y=0.22.解:设甲公司单独完成需x周,需要工钱a万元,乙公司单独完成需y周,需要工钱b万元.依题意得解之得即经检验:是方程组的根,且符合题意.又解之得即甲公司单独完成需工钱6万元,乙公司单独完成需工钱4万元.答:从节约开支角度考虑,应选乙公司单独完成.23.解:由题意可得:,解之,,所以a=6,b=.24.解:根据题意得,4×(﹣3)﹣m(﹣1)=﹣2,5n+5×4=15,解得m=﹣1,n=10,把m=﹣1,n=10代入代数式,可得:原式=91.25.解:(1)2台大收割机和5台小收割机同时工作1h共收割小麦(2x+5y)hm2,3台大收割机和2台小收割机同时工作1h共收割小麦(3x+2y)hm2;故答案为(2x+5y),(3x+2y);(2)由题意得,解得.答:1台大收割机和1台小收割机每小时各收割小麦0.4hm2和0.2hm2.26.解:我最欣赏(1)中的乙同学的解题思路,,①+②得:5x+5y=7k+4,x+y=,∵x+y=2,∴=2,解得:k=,评价:甲同学是直接根据方程组的解的概念先解方程组,得到用含k的式子表示x,y的表达式,再代入x+y=2得到关于k的方程,没有经过更多的观察和思考,解法比较繁琐,计算量大;乙同学观察到了方程组中未知数x,y的系数,以及与x+y=2中的系数的特殊关系,利用整体代入简化计算,而且不用求出x,y的值就能解决问题,思路比较灵活,计算量小;丙同学将三个方程做为一个整体,看成关于x,y,k的三元一次方程组,并且选择先解其中只含有两个未知数x,y的二元一次方程组,相对计算量较小,但不如乙同学的简洁、灵活.27.解:(1)这两所学校报名参加旅游的学生人
本文标题:第8章二元一次方程组单元测试含答案解析(期末考题好题精选)
链接地址:https://www.777doc.com/doc-7495976 .html