您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 东营市利津县2017届九年级上期中数学试卷含答案解析
2016-2017学年山东省东营市利津县九年级(上)期中数学试卷一、选择题:本大题共10小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分.1.下列方程,是一元二次方程的有()个①3x2+x=20,②2x2﹣3xy+4=0,③x2﹣=4,④x2=0,⑤x2﹣+3=0.A.2B.3C.4D.52.下列图形中,既是轴对称图形又是中心对称图形的()A.B.C.D.3.把抛物线y=3x2先向上平移2个单位,再向右平移3个单位,所得的抛物线是()A.y=3(x+3)2﹣2B.y=3(x+3)2+2C.y=3(x﹣3)2﹣2D.y=3(x﹣3)2+24.用配方法解方程2x2+3=7x时,方程可变形为()A.(x﹣)2=B.(x﹣)2=C.(x﹣)2=D.(x﹣)2=5.如图,将△ABC绕着点C顺时针旋转50°后得到△A′B′C′.若∠A=40°.∠B′=110°,则∠BCA′的度数是()A.110°B.80°C.40°D.30°6.方程(x﹣3)2=2(x﹣3)的根是()A.2B.3C.2,3D.5,37.如果关于x的一元二次方程k2x2﹣(2k+1)x+1=0有两个不相等的实数根,那么k的取值范围是()A.k>B.k>且k≠0C.k<D.k≥且k≠08.如图,点C是线段AB上的一个动点,AB=1,分别以AC和CB为一边作正方形,用S表示这两个正方形的面积之和,下列判断正确的是()A.当C是AB的中点时,S最小B.当C是AB的中点时,S最大C.当C为AB的三等分点时,S最小D.当C为AB的三等分点时,S最大9.如图,点A、B、C、D都在⊙O上,∠ABC=90°,AD=12,CD=5,则⊙O的直径的长是()A.5B.12C.13D.2010.如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A、B两点,与y轴交于C点,且对称轴为x=1,点B坐标为(﹣1,0).则下面的四个结论:①2a+b=0;②4a﹣2b+c<0;③ac>0;④当y<0时,x<﹣1或x>2.其中正确的个数是()A.1B.2C.3D.4二、填空题:本大题共8小题,每题4分,共32分.11.关于x的方程x2﹣3x+m=0有一个根是1,则方程的另一个根是.12.已知点A(1+a,1)和点B(5,b﹣1)是关于原点O的对称点,则a+b=.13.如图,对称轴平行于y轴的抛物线与x轴交于(1,0),(3,0)两点,则它的对称轴为.14.如图,⊙O的直径AB与弦CD垂直,且∠BAC=40°,则∠BOD=.15.一小球被抛出后,距离地面的高度h(米)和飞行时间t(秒)满足下面函数关系式:h=﹣5(t﹣1)2+6,则小球距离地面的最大高度是.16.生物兴趣小组的同学,将自己收集的标本向其他同学各赠送1件,全组共互赠了182件,如果全组有x名同学,则方程为.(不解方程)17.已知点A(4,y1),B(,y2),C(﹣2,y3)都在二次函数y=(x﹣2)2﹣1的图象上,则y1、y2、y3的大小关系是.18.已知直角三角形两边x、y的长满足|x2﹣4|+=0,则第三边长为.三、解答与证明题:本大题共58分.19.已知抛物线经过点(2,3),且顶点坐标为(1,1),求这条抛物线的解析式.20.残缺的圆形轮片上,弦AB的垂直平分线交弧AB于点C,交弦AB于点D.测得AB=24cm,CD=8cm.求这个圆的半径.21.在“全民阅读”活动中,某中学对全校学生中坚持每天半小时阅读的人数进行了调查,2013年全校坚持每天半小时阅读有1000名学生,2014年全校坚持每天半小时阅读人数比2013年增加10%,2015年全校坚持每天半小时阅读人数比2014年增加340人.(1)求2015年全校坚持每天半小时阅读学生人数;(2)求从2013年到2015年全校坚持每天半小时阅读的人数的平均增长率.22.如图,正方形ABCD和正方形AEFG有一个公共点A,点G、E分别在线段AD、AB上.(1)连接DF、BF,若将正方形AEFG绕点A按顺时针方向旋转,判断命题“在旋转的过程中,线段DF与BF的长始终相等”是否正确?答:.(2)若将正方形AEFG绕点A按顺时针方向旋转,连接DG,在旋转过程中,你能否找到一条线段的长与线段DG的长始终相等?并以图为例说明理由.23.已知二次函数y=﹣x2+2x+m.(1)如果二次函数的图象与x轴有两个交点,求m的取值范围;(2)如图,二次函数的图象过点A(3,0),与y轴交于点B,直线AB与这个二次函数图象的对称轴交于点P,求点P的坐标.(3)根据图象直接写出使一次函数值大于二次函数值的x的取值范围.24.某衬衣店将进价为30元的一种衬衣以40元售出,平均每月能售出600件,调查表明:这种衬衣售价每上涨1元,其销售量将减少10件.(1)写出月销售利润y(单位:元)与售价x(单位:元/件)之间的函数解析式.(2)当销售价定为45元时,计算月销售量和销售利润.(3)衬衣店想在月销售量不少于300件的情况下,使月销售利润达到10000元,销售价应定为多少?(4)当销售价定为多少元时会获得最大利润?求出最大利润.25.如图,隧道的截面由抛物线和长方形构成,长方形的长是12m,宽是4m.按照图中所示的直角坐标系,抛物线可以用y=﹣x2+bx+c表示,且抛物线的点C到墙面OB的水平距离为3m时,到地面OA的距离为m.(1)求该抛物线的函数关系式,并计算出拱顶D到地面OA的距离;(2)一辆货运汽车载一长方体集装箱后高为6m,宽为4m,如果隧道内设双向行车道,那么这辆货车能否安全通过?(3)在抛物线型拱壁上需要安装两排灯,使它们离地面的高度相等,如果灯离地面的高度不超过8m,那么两排灯的水平距离最小是多少米?2016-2017学年山东省东营市利津县九年级(上)期中数学试卷参考答案与试题解析一、选择题:本大题共10小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分.1.下列方程,是一元二次方程的有()个①3x2+x=20,②2x2﹣3xy+4=0,③x2﹣=4,④x2=0,⑤x2﹣+3=0.A.2B.3C.4D.5【考点】一元二次方程的定义.【分析】本题根据一元二次方程的定义解答.一元二次方程必须满足四个条件:(1)未知数的最高次数是2;(2)二次项系数不为0;(3)是整式方程;(4)含有一个未知数.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.【解答】解:①是一元二次方程;②含有2个未知数,不是一元二次方程;③不是整式方程,则不是一元二次方程;④是一元二次方程;⑤是一元二次方程.是一元二次方程的有3个.故选B.2.下列图形中,既是轴对称图形又是中心对称图形的()A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】根据中心对称图形的定义旋转180°后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出.【解答】解:A、是轴对称图形不是中心对称图形,故错误,B、既是轴对称图形又是中心对称图形,故正确,C,不是轴对称图形是中心对称图形,故错误,D、不是轴对称图形是中心对称图形,故错误,故选B.3.把抛物线y=3x2先向上平移2个单位,再向右平移3个单位,所得的抛物线是()A.y=3(x+3)2﹣2B.y=3(x+3)2+2C.y=3(x﹣3)2﹣2D.y=3(x﹣3)2+2【考点】二次函数图象与几何变换.【分析】根据二次函数图象左加右减,上加下减的平移规律进行求解.【解答】解:抛物线y=3x2先向上平移2个单位,得:y=3x2+2;再向右平移3个单位,得:y=3(x﹣3)2+2;故选D.4.用配方法解方程2x2+3=7x时,方程可变形为()A.(x﹣)2=B.(x﹣)2=C.(x﹣)2=D.(x﹣)2=【考点】解一元二次方程-配方法.【分析】此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应用.【解答】解:∵2x2+3=7x,∴2x2﹣7x=﹣3,∴x2﹣x=﹣,∴x2﹣x+=﹣+,∴(x﹣)2=.故选D.5.如图,将△ABC绕着点C顺时针旋转50°后得到△A′B′C′.若∠A=40°.∠B′=110°,则∠BCA′的度数是()A.110°B.80°C.40°D.30°【考点】旋转的性质.【分析】首先根据旋转的性质可得:∠A′=∠A,∠A′CB′=∠ACB,即可得到∠A′=40°,再有∠B′=110°,利用三角形内角和可得∠A′CB′的度数,进而得到∠ACB的度数,再由条件将△ABC绕着点C顺时针旋转50°后得到△A′B′C′可得∠ACA′=50°,即可得到∠BCA′的度数.【解答】解:根据旋转的性质可得:∠A′=∠A,∠A′CB′=∠ACB,∵∠A=40°,∴∠A′=40°,∵∠B′=110°,∴∠A′CB′=180°﹣110°﹣40°=30°,∴∠ACB=30°,∵将△ABC绕着点C顺时针旋转50°后得到△A′B′C′,∴∠ACA′=50°,∴∠BCA′=30°+50°=80°,故选:B.6.方程(x﹣3)2=2(x﹣3)的根是()A.2B.3C.2,3D.5,3【考点】解一元二次方程-因式分解法.【分析】直接利用提取公因式法分解因式,进而解方程得出答案.【解答】解:(x﹣3)2=2(x﹣3)(x﹣3)2﹣2(x﹣3)=0,(x﹣3)(x﹣3﹣2)=0,则(x﹣3)(x﹣5)=0,解得:x1=3,x2=5.故选:D.7.如果关于x的一元二次方程k2x2﹣(2k+1)x+1=0有两个不相等的实数根,那么k的取值范围是()A.k>B.k>且k≠0C.k<D.k≥且k≠0【考点】根的判别式.【分析】若一元二次方程有两不等根,则根的判别式△=b2﹣4ac>0,建立关于k的不等式,求出k的取值范围.【解答】解:由题意知,k≠0,方程有两个不相等的实数根,所以△>0,△=b2﹣4ac=(2k+1)2﹣4k2=4k+1>0.又∵方程是一元二次方程,∴k≠0,∴k>且k≠0.故选B.8.如图,点C是线段AB上的一个动点,AB=1,分别以AC和CB为一边作正方形,用S表示这两个正方形的面积之和,下列判断正确的是()A.当C是AB的中点时,S最小B.当C是AB的中点时,S最大C.当C为AB的三等分点时,S最小D.当C为AB的三等分点时,S最大【考点】二次函数的最值.【分析】根据四个选择项,可知要判断的问题是C在AB的什么位置时,S有最大或最小值.由于点C是线段AB上的一个动点,可设AC=x,然后用含x的代数式表示S,得到S与x的函数关系式,最后根据函数的性质进行判断.【解答】解:设AC=x,则CB=1﹣x,S=x2+(1﹣x)2即S=2x2﹣2x+1,所以当x==时,S最小.此时,C是AB的中点.故选A.9.如图,点A、B、C、D都在⊙O上,∠ABC=90°,AD=12,CD=5,则⊙O的直径的长是()A.5B.12C.13D.20【考点】圆周角定理.【分析】根据直径所对的圆周角是90°和勾股定理可以求得⊙O的直径,从而可以解答本题.【解答】解:∵点A、B、C、D都在⊙O上,∠ABC=90°,∴AC是⊙O的直径,∴∠ADC=90°,∵AD=12,CD=5,∴AC=,故选C.10.如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A、B两点,与y轴交于C点,且对称轴为x=1,点B坐标为(﹣1,0).则下面的四个结论:①2a+b=0;②4a﹣2b+c<0;③ac>0;④当y<0时,x<﹣1或x>2.其中正确的个数是()A.1B.2C.3D.4【考点】二次函数图象与系数的关系.【分析】根据对称轴为x=1可判断出2a+b=0正确,当x=﹣2时,4a﹣2b+c<0,根据开口方向,以及与y轴交点可得ac<0,再求出A点坐标,可得当y<0时,x<﹣1或x>3.【解答】解:∵对称轴为x=1,∴x=﹣=1,∴﹣b=2a,∴①2a+b=0,故此选项正确;∵点B坐标为(﹣1,0),∴当x=﹣2时,4a﹣2b+c<0
本文标题:东营市利津县2017届九年级上期中数学试卷含答案解析
链接地址:https://www.777doc.com/doc-7496026 .html