您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 日照市莒县2015-2016年九年级上第一次月考数学试卷含案解析
2015-2016学年山东省日照市莒县九年级(上)第一次月考数学试卷一、选择题(共12小题,1-8每小题3分,9-12题每小题3分,共40分)1.如图,AB为⊙O的直径,点C在⊙O上,若∠B=60°,则∠A等于()A.80°B.50°C.40°D.30°2.下列命题错误的是()A.经过三个点一定可以作圆B.三角形的外心到三角形各顶点的距离相等C.同圆或等圆中,相等的圆心角所对的弧相等D.经过切点且垂直于切线的直线必经过圆心3.⊙O的直径为10,圆心O到弦AB的距离为3,则弦AB的长是()A.4B.6C.7D.84.如图,点A,B,C都在⊙O上,∠A=∠B=20°,则∠AOB等于()A.40°B.60°C.80°D.100°5.如图,小华同学设计了一个圆直径的测量器,标有刻度的尺子OA,OB在0点钉在一起,并使它们保持垂直,在测直径时,把0点靠在圆周上,读得刻度OE=8个单位,OF=6个单位,则圆的直径为()A.12个单位B.10个单位C.4个单位D.15个单位6.将量角器按如图所示的方式放置在三角形纸板上,使点C在半圆上.点A、B的读数分别为86°、30°,则∠ACB的大小为()A.15°B.28°C.29°D.34°7.在平面直角坐标系中,以点(2,3)为圆心,2为半径的圆必定()A.与x轴相离,与y轴相切B.与x轴,y轴都相离C.与x轴相切,与y轴相离D.与x轴,y轴都相切8.在数轴上,点A所表示的实数为3,点B所表示的实数为a,⊙A的半径为2.下列说法中不正确的是()A.当a<5时,点B在⊙A内B.当1<a<5时,点B在⊙A内C.当a<1时,点B在⊙A外D.当a>5时,点B在⊙A外9.半径相等的圆的内接正三角形、正方形、正六边形的边长之比为()A.1::B.::1C.3:2:1D.1:2:310.如图,P为⊙O外一点,PA、PB分别切⊙O于A、B,CD切⊙O于点E,分别交PA、PB于点C、D,若PA=5,则△PCD的周长为()A.5B.7C.8D.1011.已知在△ABC中,AB=AC=13,BC=10,那么△ABC的内切圆的半径为()A.B.C.2D.312.如图,点I是的内心,点O为△ABC的外心,若∠BOA=140度,则∠BIC的度数为()A.100B.120C.125D.135二、填空题(共4小题,每小题4分,共24分)13.已知一个三角形的边长分别为3,4,5,则这个三角形的内切圆的半径为.14.已知在⊙O中,半径r=13,弦AB∥CD,且AB=24,CD=10,则AB与CD的距离为.15.一个正三角形的边长为,则它的内切圆的面积为,外接圆的面积为.16.如图,AB是⊙O的直径,AB=AC,BC交⊙O于点D,AC交⊙O于点E,∠BAC=45°,给出下列五个结论:①∠EBC=22.5°;②BD=DC;③AE=2EC;④劣弧AE是劣弧DE的2倍;⑤AE=BC.其中正确结论的序号是.三、解答题(共7小题,17、18题7分,19-23题10分,共64分)17.如图,PA,PB是⊙O的切线,点A,B为切点,AC是⊙O的直径,∠ACB=70°.求∠P的度数.18.如图,一条公路的转弯处是一段圆弧(图中的AB弧),点O是这段弧的圆心,C是弧AB上一点,OC⊥AB,垂足为D,AB=12m,CD=2m.求这段弯路的半径.19.如图,AB为圆O的直径,AB=AC,BC交圆O于点E,∠BAC=45度.(1)求∠EBC的度数;(2)BD与CD是否相等?请说明理由.20.如图,在⊙O中,直径AB与弦CD相交于点P,∠CAB=40°,∠APD=65°.(1)求∠B的大小;(2)已知AD=6,求圆心O到BD的距离.21.如图,在△ABC中,∠C=90°,AD是∠BAC的平分线,O是AB上一点,以OA为半径的⊙O经过点D.(1)求证:BC是⊙O切线;(2)若BD=5,DC=3,求AC的长.22.如图①,AB是⊙O的直径,AC是弦,直线EF和⊙O相切于点C,AD⊥EF,垂足为D.(1)求证:∠DAC=∠BAC;(2)若把直线EF向上平行移动,如图②,EF交⊙O于G、C两点,若题中的其它条件不变,这时与∠DAC相等的角是哪一个?为什么?23.如图,在平面直角坐标系中,⊙C与y轴相切,且C点坐标为(1,0),直线l过点A(﹣1,0),与⊙C相切于点D,求直线l的解析式.2015-2016学年山东省日照市莒县九年级(上)第一次月考数学试卷参考答案与试题解析一、选择题(共12小题,1-8每小题3分,9-12题每小题3分,共40分)1.如图,AB为⊙O的直径,点C在⊙O上,若∠B=60°,则∠A等于()A.80°B.50°C.40°D.30°【考点】圆周角定理.【分析】由AB为⊙O的直径,根据半圆(或直径)所对的圆周角是直角,即可求得∠C=90°,又由∠B=60°,即可求得答案.【解答】解:∵AB为⊙O的直径,∴∠C=90°,∵∠B=60°,∴∠A=90°﹣∠B=30°.故选D.【点评】此题考查了圆周角定理与直角三角形的性质.此题比较简单,解题的关键是掌握半圆(或直径)所对的圆周角是直角定理的应用.2.下列命题错误的是()A.经过三个点一定可以作圆B.三角形的外心到三角形各顶点的距离相等C.同圆或等圆中,相等的圆心角所对的弧相等D.经过切点且垂直于切线的直线必经过圆心【考点】确定圆的条件.【分析】分别根据圆的有关性质判断即可.要注意:在同一平面上但不在同一条直线上的三点确定一个圆.【解答】解:A、在同一平面上但不在同一条直线上的三点确定一个圆,故选项错误;B、三角形的外心是三边垂直平分线的交点,它到三角形各顶点的距离相等,故选项正确;C、同圆或等圆中,相等的圆心角所对的弧相等,故选项正确;D、经过切点且垂直于切线的直线必经过圆心,故选项正确.故选A.【点评】要掌握确定一个圆的条件和注意事项.注意:不在同一直线的三个点确定一个圆.3.⊙O的直径为10,圆心O到弦AB的距离为3,则弦AB的长是()A.4B.6C.7D.8【考点】垂径定理;勾股定理.【分析】先求出半径,再利用勾股定理求出半弦长,弦长就可以求出了.【解答】解:如图,根据题意得,∵OA=×10=5,AE===4∴AB=2AE=8.故选D.【点评】本题考查的是垂径定理,根据题意画出图形,作出辅助线,构造出直角三角形是解答此题的关键.4.如图,点A,B,C都在⊙O上,∠A=∠B=20°,则∠AOB等于()A.40°B.60°C.80°D.100°【考点】圆周角定理.【分析】连接OC,根据等边对等角即可得到∠B=∠BCO,∠A=∠ACO,从而求得∠ACB的度数,然后根据圆周角定理即可求解.【解答】解:连接OC.∵OB=OC,∴∠B=∠BCO,同理,∠A=∠ACO∴∠ACB=∠A+∠B=40°,∴∠AOB=2∠ACB=80°.故选C.【点评】本题考查了圆周角定理,正确作出辅助线,求得∠ACB的度数是关键.5.如图,小华同学设计了一个圆直径的测量器,标有刻度的尺子OA,OB在0点钉在一起,并使它们保持垂直,在测直径时,把0点靠在圆周上,读得刻度OE=8个单位,OF=6个单位,则圆的直径为()A.12个单位B.10个单位C.4个单位D.15个单位【考点】圆周角定理;勾股定理.【分析】根据圆中的有关性质“90°的圆周角所对的弦是直径”.从而得到EF即可是直径,根据勾股定理计算即可.【解答】解:连接EF,∵OE⊥OF,∴EF是直径,∴EF====10.故选:B.【点评】考查了圆中的有关性质:90°的圆周角所对的弦是直径.此性质是判断直径的一个有效方法,也是构造直角三角形的一个常用方法.6.将量角器按如图所示的方式放置在三角形纸板上,使点C在半圆上.点A、B的读数分别为86°、30°,则∠ACB的大小为()A.15°B.28°C.29°D.34°【考点】圆周角定理.【分析】根据圆周角定理可知:圆周角的度数等于它所对的弧的度数的一半,从而可求得∠ACB的度数.【解答】解:根据圆周角定理可知:圆周角的度数等于它所对的弧的度数的一半,根据量角器的读数方法可得:(86°﹣30°)÷2=28°.故选:B.【点评】此题考查了圆周角的度数和它所对的弧的度数之间的关系:圆周角等于它所对的弧的度数的一半.7.在平面直角坐标系中,以点(2,3)为圆心,2为半径的圆必定()A.与x轴相离,与y轴相切B.与x轴,y轴都相离C.与x轴相切,与y轴相离D.与x轴,y轴都相切【考点】直线与圆的位置关系;坐标与图形性质.【分析】本题应将该点的横纵坐标分别与半径对比,大于半径的相离,等于半径的相切.【解答】解:∵是以点(2,3)为圆心,2为半径的圆,如图所示:∴这个圆与y轴相切,与x轴相离.故选A.【点评】直线与圆相切,直线到圆的距离等于半径;与圆相离,直线到圆的距离大于半径.8.在数轴上,点A所表示的实数为3,点B所表示的实数为a,⊙A的半径为2.下列说法中不正确的是()A.当a<5时,点B在⊙A内B.当1<a<5时,点B在⊙A内C.当a<1时,点B在⊙A外D.当a>5时,点B在⊙A外【考点】点与圆的位置关系.【分析】先找出与点A的距离为2的点1和5,再根据“点与圆的位置关系的判定方法”即可解.【解答】解:由于圆心A在数轴上的坐标为3,圆的半径为2,∴当d=r时,⊙A与数轴交于两点:1、5,故当a=1、5时点B在⊙A上;当d<r即当1<a<5时,点B在⊙A内;当d>r即当a<1或a>5时,点B在⊙A外.由以上结论可知选项B、C、D正确,选项A错误.故选:A.【点评】本题考查点与圆的位置关系的判定方法.若用d、r分别表示点到圆心的距离和圆的半径,则当d>r时,点在圆外;当d=r时,点在圆上;当d<r时,点在圆内.9.半径相等的圆的内接正三角形、正方形、正六边形的边长之比为()A.1::B.::1C.3:2:1D.1:2:3【考点】正多边形和圆.【分析】从中心向边作垂线,构建直角三角形,通过解直角三角形可得.【解答】解:设圆的半径是r,则多边形的半径是r,则内接正三角形的边长是2rsin60°=r,内接正方形的边长是2rsin45°=r,正六边形的边长是r,因而半径相等的圆的内接正三角形、正方形、正六边形的边长之比为::1.故选B.【点评】正多边形的计算一般是通过中心作边的垂线,连接半径,把正多边形中的半径,边长,边心距,中心角之间的计算转化为解直角三角形.10.如图,P为⊙O外一点,PA、PB分别切⊙O于A、B,CD切⊙O于点E,分别交PA、PB于点C、D,若PA=5,则△PCD的周长为()A.5B.7C.8D.10【考点】切线长定理.【分析】由切线长定理可得PA=PB,CA=CE,DE=DB,由于△PCD的周长=PC+CE+ED+PD,所以△PCD的周=PC+CA+BD+PD=PA+PB=2PA,故可求得三角形的周长.【解答】解:∵PA、PB为圆的两条相交切线,∴PA=PB,同理可得:CA=CE,DE=DB.∵△PCD的周长=PC+CE+ED+PD,∴△PCD的周长=PC+CA+BD+PD=PA+PB=2PA,∴△PCD的周长=10,故选D.【点评】本题考查了切线的性质以及切线长定理的运用.11.已知在△ABC中,AB=AC=13,BC=10,那么△ABC的内切圆的半径为()A.B.C.2D.3【考点】三角形的内切圆与内心.【分析】连接OA,OB,OC,把原三角形分成三个三角形,而这三个三角形的高就是内切圆的半径.等腰三角形ABC的面积可通过作高求得,这样得到关于半径的方程,解方程即可.【解答】解:连OA,OB,OC.因为AB=AC,O是内心,所以AO⊥BC,垂足为F.设内切圆半径为r,∵AB=AC=13,BC=10,∴BF=5,∴AF=12,则S△ABC=×12×10=60;又∵S△ABC=S△OAC+S△OBC+S△OAC=rAB+rAC+rBC=r(13+13+10)=60,∴r=.故选A.【点评】熟练掌握三角形内切圆的性质和等腰三角形的性质.记住三角形的面积等于三角形内切圆的半径与周长的积的一半,是解决本题的关键.12.
本文标题:日照市莒县2015-2016年九年级上第一次月考数学试卷含案解析
链接地址:https://www.777doc.com/doc-7500346 .html