您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 武汉市部分学校2016届九年级上月考试卷(12月)含答案解析
2015-2016学年湖北省武汉市部分学校九年级(上)月考数学试卷(12月份)一、选择题(共10小题,每小题3分,共30分)1.方程4x2﹣8x﹣25=0的一次项系数和常数项分别为()A.﹣2,25B.﹣2,﹣25C.8,﹣25D.﹣8,﹣252.如图图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.3.如图,将△ABC绕点A逆时针旋转一定角度,得到△ADE.若∠CAE=65°,∠E=70°,且AD⊥BC,∠BAC的度数为()A.60°B.75°C.85°D.90°4.如图,弦AC∥OB,∠B=25°,则∠O=()A.20°B.30°C.40°D.50°5.方程5x﹣1=4x2的两根之和为()A.B.﹣C.D.﹣6.如图是抛物线形拱桥,当拱顶高离水面2m时,水面宽4m.水面下降2.5m,水面宽度增加()A.1mB.2mC.3mD.6m7.二次函数y=x2﹣6x+21的图象顶点坐标为()A.(﹣6,3)B.(6,3)C.(﹣6,75)D.(6,75)8.如图,在矩形ABCD中,AB=4,AD=5,AD,AB,BC分别与⊙O相切于E,F,G三点,过点D作⊙O的切线BC于点M,切点为N,则DM的长为()A.B.C.D.29.如图,在直角坐标系中,已知点A(﹣3,0)、B(0,4),对△OAB连续作旋转变换,依次得到△1、△2、△3、△4、…,△16的直角顶点的坐标为()A.(60,0)B.(72,0)C.(67,)D.(79,)10.在Rt△ABC中,∠C=90°,AC=10,BC=12,点D为线段BC上一动点.以CD为⊙O直径,作AD交⊙O于点E,连BE,则BE的最小值为()A.6B.8C.10D.12二、填空题(本大题共6个小题,每小题3分,共18分)11.圆的直径为13cm,如果圆心与直线的距离是d,且d≥6.5cm,则直线与圆的位置关系是.12.将抛物线y=2(x+3)2+5向右平移2个单位后的抛物线解析式为.13.已知点A(a,1)与点B(3,b)关于原点对称,则线段AB=.14.有两人患了流感,经过两轮传染后共有242人患了流感,求每轮传染中平均一个人传染了几个人?设每轮传染中平均一个人传染了x人,则可列方程为.15.边心距为2的正六边形的面积为.16.将边长为的正方形ABCD与边长为的正方形CEFG如图摆放,点G恰好落在线段DE上.连BE,则BE长为.三、解答题(共8题,共72分)17.解方程:3x2﹣6x﹣2=0.18.已知二次函数图象的顶点为(3,﹣1),与y轴交于点(0,﹣4).(1)求二次函数解析式;(2)求函数值y>﹣4时,自变量x的取值范围.19.如图,△ABC各顶点的坐标分别是A(﹣2,﹣4),B(0,﹣4),C(1,﹣1).(1)在图中画出△ABC向左平移3个单位后的△A1B1C1;(2)在图中画出△ABC绕原点O逆时针旋转90°后的△A2B2C2;(3)在(2)的条件下,AC边扫过的面积是.20.已知关于x的方程kx2+(2k+1)x+2=0.(1)求证:无论k取任何实数时,方程总有实数根;(2)当抛物线y=kx2+(2k+1)x+2图象与x轴两个交点的横坐标均为整数,且k为正整数时,若P(a,y1),Q(1,y2)是此抛物线上的两点,且y1>y2,请结合函数图象确定实数a的取值范围;(3)已知抛物线y=kx2+(2k+1)x+2恒过定点,求出定点坐标.21.如图,在△ABC中,AB=AC,以AC为直径的⊙O交BC于点D,交AB于点E,过点D作DF⊥AB,垂足为点F,连接DE.(1)求证:直线DF与⊙O相切;(2)若CD=3,BF=1,求AE的长.22.2015年十一黄金周商场大促销,某店主计划从厂家采购高级羽绒服和时尚皮衣两种产品共20件,高级羽绒服的采购单价y1(元/件)与采购数量x1(件)满足y1=﹣20x1+1500(0<x1≤20,x1为整数);时尚皮衣的采购单价y2(元/件)与采购数量x2(件)满足y2=﹣10x2+1300(0<x2≤20,x2为整数).(1)经店主与厂家协商,采购高级羽绒服的数量不少于时尚皮衣数量,且高级羽绒服采购单价不低于1240元,问该店主共有几种进货方案?(2)该店主分别以1760元/件和1700元/件的销售出高级羽绒服和时尚皮衣,且全部售完,则在(1)问的条件下,采购高级羽绒服多少件时总利润最大?并求最大利润.23.已知,正方形ABCD的边长为4,点E是对角线BD延长线上一点,AE=BD.将△ABE绕点A顺时针旋转α度(0°<α<360°)得到△AB′E′,点B、E的对应点分别为B′、E′.(1)如图1,当α=30°时,求证:B′C=DE;(2)连接B′E、DE′,当B′E=DE′时,请用图2求α的值;(3)如图3,点P为AB的中点,点Q为线段B′E′上任意一点,试探究,在此旋转过程中,线段PQ长度的取值范围为.24.已知:抛物线y=ax2+bx+c与x轴交于点A(﹣2,0)、B(8,0),与y轴交于点C(0,﹣4).直线y=x+m与抛物线交于点D、E(D在E的左侧),与抛物线的对称轴交于点F.(1)求抛物线的解析式;(2)当m=2时,求∠DCF的大小;(3)若在直线y=x+m下方的抛物线上存在点P,使得∠DPF=45°,且满足条件的点P只有两个,则m的值为.(第(3)问不要求写解答过程)2015-2016学年湖北省武汉市部分学校九年级(上)月考数学试卷(12月份)参考答案与试题解析一、选择题(共10小题,每小题3分,共30分)1.方程4x2﹣8x﹣25=0的一次项系数和常数项分别为()A.﹣2,25B.﹣2,﹣25C.8,﹣25D.﹣8,﹣25【考点】一元二次方程的一般形式.【分析】根据ax2+bx+c=0(a,b,c是常数且a≠0)a,b,c分别叫二次项系数,一次项系数,常数项,可得答案.【解答】解:4x2﹣8x﹣25=0的一次项系数和常数项分别为﹣8,﹣25.故选:D.2.如图图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】根据轴对称图形与中心对称图形的概念求解.【解答】解:A、不是轴对称图形,是中心对称图形.故选项错误;B、不是轴对称图形,是中心对称图形.故选项错误;C、是轴对称图形,也是中心对称图形.故选项正确;D、是轴对称图形,不是中心对称图形.故选项错误.故选C.3.如图,将△ABC绕点A逆时针旋转一定角度,得到△ADE.若∠CAE=65°,∠E=70°,且AD⊥BC,∠BAC的度数为()A.60°B.75°C.85°D.90°【考点】旋转的性质.【分析】根据旋转的性质知,旋转角∠EAC=∠BAD=65°,对应角∠C=∠E=70°,则在直角△ABF中易求∠B=25°,所以利用△ABC的内角和是180°来求∠BAC的度数即可.【解答】解:根据旋转的性质知,∠EAC=∠BAD=65°,∠C=∠E=70°.如图,设AD⊥BC于点F.则∠AFB=90°,∴在Rt△ABF中,∠B=90°﹣∠BAD=25°,∴在△ABC中,∠BAC=180°﹣∠B﹣∠C=180°﹣25°﹣70°=85°,即∠BAC的度数为85°.故选C.4.如图,弦AC∥OB,∠B=25°,则∠O=()A.20°B.30°C.40°D.50°【考点】圆周角定理.【分析】先根据平行线的性质求出∠A的度数,再由圆周角定理即可得出结论.【解答】解:∵AC∥OB,∠B=25°,∴∠A=∠B=25°.∵∠A与∠O是同弧所对的圆周角与圆心角,∴∠O=2∠A=50°.故选D.5.方程5x﹣1=4x2的两根之和为()A.B.﹣C.D.﹣【考点】根与系数的关系.【分析】把方程化为一般形式后,根据根与系数的关系得到两根之和即可.【解答】解:∵5x﹣1=4x2,∴4x2﹣5x+1=0,设方程4x2﹣5x+1=0的两根设为:x1,x2,∴x1+x2=.故选:A.6.如图是抛物线形拱桥,当拱顶高离水面2m时,水面宽4m.水面下降2.5m,水面宽度增加()A.1mB.2mC.3mD.6m【考点】二次函数的应用.【分析】根据已知得出直角坐标系,进而求出二次函数解析式,再通过把y=﹣2.5代入抛物线解析式得出水面宽度,即可得出答案.【解答】解:建立平面直角坐标系,设横轴x通过AB,纵轴y通过AB中点O且通过C点,则通过画图可得知O为原点,抛物线以y轴为对称轴,且经过A,B两点,OA和OB可求出为AB的一半2米,抛物线顶点C坐标为(0,2),通过以上条件可设顶点式y=ax2+2,其中a可通过代入A点坐标(﹣2,0),到抛物线解析式得出:a=﹣0.5,所以抛物线解析式为y=﹣0.5x2+2,当水面下降2.5米,通过抛物线在图上的观察可转化为:当y=﹣2.5时,对应的抛物线上两点之间的距离,也就是直线y=﹣1与抛物线相交的两点之间的距离,可以通过把y=﹣2.5代入抛物线解析式得出:﹣2.5=﹣0.5x2+2,解得:x=±3,所以水面宽度增加到6米,比原先的宽度当然是增加了2米.故选:B.7.二次函数y=x2﹣6x+21的图象顶点坐标为()A.(﹣6,3)B.(6,3)C.(﹣6,75)D.(6,75)【考点】二次函数的性质.【分析】把函数的一般式化成顶点式,即可求得顶点坐标.【解答】解:∵y=x2﹣6x+21=(x﹣6)2+3,∴二次函数y=x2﹣6x+21的图象顶点坐标为:(6,3).故选B.8.如图,在矩形ABCD中,AB=4,AD=5,AD,AB,BC分别与⊙O相切于E,F,G三点,过点D作⊙O的切线BC于点M,切点为N,则DM的长为()A.B.C.D.2【考点】切线的性质;矩形的性质.【分析】连接OE,OF,ON,OG,在矩形ABCD中,得到∠A=∠B=90°,CD=AB=4,由于AD,AB,BC分别与⊙O相切于E,F,G三点得到∠AEO=∠AFO=∠OFB=∠BGO=90°,推出四边形AFOE,FBGO是正方形,得到AF=BF=AE=BG=2,由勾股定理列方程即可求出结果.【解答】解:连接OE,OF,ON,OG,在矩形ABCD中,∵∠A=∠B=90°,CD=AB=4,∵AD,AB,BC分别与⊙O相切于E,F,G三点,∴∠AEO=∠AFO=∠OFB=∠BGO=90°,∴四边形AFOE,FBGO是正方形,∴AF=BF=AE=BG=2,∴DE=3,∵DM是⊙O的切线,∴DN=DE=3,MN=MG,∴CM=5﹣2﹣MN=3﹣MN,在Rt△DMC中,DM2=CD2+CM2,∴(3+NM)2=(3﹣NM)2+42,∴NM=,∴DM=3=,故选A.9.如图,在直角坐标系中,已知点A(﹣3,0)、B(0,4),对△OAB连续作旋转变换,依次得到△1、△2、△3、△4、…,△16的直角顶点的坐标为()A.(60,0)B.(72,0)C.(67,)D.(79,)【考点】规律型:点的坐标.【分析】根据题目提供的信息,可知旋转三次为一个循环,图中第三次和第四次的直角顶点的坐标相同,由①→③时直角顶点的坐标可以求出来,从而可以解答本题.【解答】解:由题意可得,△OAB旋转三次和原来的相对位置一样,点A(﹣3,0)、B(0,4),∴OA=3,OB=4,∠BOA=90°,∴AB=∴旋转到第三次时的直角顶点的坐标为:(12,0),16÷3=5…1∴旋转第15次的直角顶点的坐标为:(60,0),又∵旋转第16次直角顶点的坐标与第15次一样,∴旋转第16次的直角顶点的坐标是(60,0).故选A.10.在Rt△ABC中,∠C=90°,AC=10,BC=12,点D为线段BC上一动点.以CD为⊙O直径,作AD交⊙O于点E,连BE,则BE的最小值为()A.6B.8C.10D.12【考点】切线的性质.【分析】连接CE,可得∠CED=∠CEA=90°,从而知点E在以AC为直径的⊙Q上,继而知点Q、E、B共线时BE最小,根据勾股定理求得QB的长,即可得答案.【解答】解:如图,连接CE,∴∠CED=∠CEA=90°,∴点E在以AC为直径的⊙Q上,∵AC=10,∴QC=QE=5,当点Q、
本文标题:武汉市部分学校2016届九年级上月考试卷(12月)含答案解析
链接地址:https://www.777doc.com/doc-7500366 .html