您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 汕尾市陆河县2017届九年级上第三次月考数学试卷含答案解析
2016-2017学年广东省汕尾市陆河县九年级(上)第三次月考数学试卷一、选择题(每小题3分,共30分)1.在下列四个图案中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.2.已知抛物线y=ax2+bx+c的开口向上,顶点坐标为(3,﹣2),那么该抛物线有()A.最小值﹣2B.最大值﹣2C.最小值3D.最大值33.在二次函数y=﹣x2+2x+1的图象中,若y随x的增大而增大,则x的取值范围是()A.x<1B.x>1C.x<﹣1D.x>﹣14.如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A、B两点,与y轴交于C点,且对称轴为x=1,点B坐标为(﹣1,0).则下面的四个结论:①2a+b=0;②4a﹣2b+c<0;③ac>0;④当y<0时,x<﹣1或x>2.其中正确的个数是()A.1B.2C.3D.45.如图,AB是⊙O的弦,点C在圆上,已知∠OBA=40°,则∠C=()A.40°B.50°C.60°D.80°6.如图,已知∠BOA=30°,M为OB边上一点,以M为圆心、2cm为半径作⊙M.点M在射线OB上运动,当OM=5cm时,⊙M与直线OA的位置关系是()A.相切B.相离C.相交D.不能确定7.如图,C是⊙O外一点,CA,CB分别与⊙O相切于点A,B,P是上一点,若∠C=x°,则∠APB的度数是()A.x°B.(90﹣)°C.(90﹣x)°D.°8.已知圆的半径是2,则该圆的内接正六边形的面积是()A.3B.9C.18D.369.在Rt△ABC中,∠C=90°,AC=12,BC=5,将△ABC绕边AC所在直线旋转一周得到圆锥,则该圆锥的侧面积是()A.25πB.65πC.90πD.130π10.在一幅长80厘米,宽50厘米的矩形风景画的四周镶一条金色的纸边,制成一幅矩形挂图,如图,如果要使整个挂图的面积是5400平方厘米,设金色纸边的宽为x厘米,那么满足的方程是()A.x2+130x﹣1400=0B.x2+65x﹣350=0C.x2﹣130x﹣1400=0D.x2﹣65x﹣350=0二、填空题(每小题3分,共24分)11.方程x(2x+3)=0的根是.12.将二次函数y=x2﹣4x+5化成y=(x﹣h)2+k的形式,则y=.13.已知二次函数y=x2﹣6x+m的最小值是﹣3,那么m的值是.14.已知二次函数当x=2时y有最大值是1,且过点(3,0),则其解析式为.15.如图,在⊙O的内接四边形ABCD中,点E在DC的延长线上.若∠A=50°,则∠BCE=.16.如图,AB、AC、BD是⊙O的切线,P、C、D为切点,如果AB=5,AC=3,则BD的长为.17.如图,已知矩形纸片ABCD,AD=2,,以A为圆心,AD长为半径画弧交BC于点E,将扇形AED剪下围成一个圆锥,则该圆锥的底面半径为.18.如图,点I为△ABC的内心,点O为△ABC的外心,若∠BIC=140°,则∠BOC=°.三、解答题一(本大题有3个小题,每小题均6分,共18分)19.求二次函数y=x2﹣2x﹣1的顶点坐标及它与x轴的交点坐标.20.如图是某风景区的一个圆拱形门,路面AB宽为2米,净高5米,求圆拱形门所在圆的半径是多少米?21.如图,已知在△ABC中,∠A=90°.(1)请用圆规和直尺作出⊙P,使圆心P在AC边上,且与AB,BC两边都相切;(保留作图痕迹,不写作法和证明)(2)若∠B=60°,AB=6,则⊙P的面积为.四、解答题二(本大题有3个小题,每小题均8分,共24分)22.已知抛物线y=﹣x2+bx+c的部分图象如图所示.(1)求b、c的值;(2)写出当y<0时,x的取值范围.23.如图,在边长为1的正方形组成的网格中,△AOB的顶点均在格点上,点A、B的坐标分别是A(3,2)、B(1,3).△AOB绕点O逆时针旋转90°后得到△A1OB1.(1)画出旋转后的图形;(2)点A1的坐标为;(3)在旋转过程中,点B经过的路径为弧BB1,求弧BB1的长为多少.24.如图所示,AB是⊙O的直径,BD是⊙O的弦,延长BD到点C,使DC=BD,连接AC,过点D作DE⊥AC于E.(1)求证:AB=AC;(2)求证:DE为⊙O的切线.三、解答题三(本大题有3个小题,每小题均9分,共27分)25.农民张大伯为了致富奔小康,大力发展家庭养殖业.他准备用40m长的木栏围一个矩形的羊圈,为了节约材料同时要使矩形的面积最大,他利用了自家房屋一面长25m的墙,设计了如图一个矩形的羊圈.(1)请你求出张大伯矩形羊圈的面积;(2)请你判断他的设计方案是否合理?如果合理,直接答合理;如果不合理又该如何设计并说明理由.26.如图,AB是⊙O的直径,C是AB延长线上一点,CD与⊙O相切于点E,AD⊥CD于点D.(1)求证:AE平分∠DAC;(2)若AB=3,∠ABE=60°.①求AD的长;②求出图中阴影部分的面积.27.如图,⊙O的半径为1,点P是⊙O上一点,弦AB垂直平分线段OP,点D是上任一点(与端点A、B不重合),DE⊥AB于点E,以点D为圆心、DE长为半径作⊙D,分别过点A、B作⊙D的切线,两条切线相交于点C.(1)求弦AB的长;(2)判断∠ACB是否为定值?若是,求出∠ACB的大小;否则,请说明理由;(3)记△ABC的面积为S,若=4,求△ABC的周长.2016-2017学年广东省汕尾市陆河县九年级(上)第三次月考数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.在下列四个图案中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.【考点】中心对称图形;轴对称图形.【分析】结合选项根据轴对称图形与中心对称图形的概念求解即可.【解答】解:A、不是轴对称图形,是中心对称图形;B、是轴对称图形,也是中心对称图形;C、不是轴对称图形,也不是中心对称图形;D、是轴对称图形,不是中心对称图形.故选B.2.已知抛物线y=ax2+bx+c的开口向上,顶点坐标为(3,﹣2),那么该抛物线有()A.最小值﹣2B.最大值﹣2C.最小值3D.最大值3【考点】二次函数的最值.【分析】根据抛物线的开口向上,顶点坐标为(3,﹣2),可直接做出判断.【解答】解:由抛物线y=ax2+bx+c的开口向上,顶点坐标为(3,﹣2),可知该抛物线有最小值﹣2,故选:A.3.在二次函数y=﹣x2+2x+1的图象中,若y随x的增大而增大,则x的取值范围是()A.x<1B.x>1C.x<﹣1D.x>﹣1【考点】二次函数的性质.【分析】抛物线y=﹣x2+2x+1中的对称轴是直线x=1,开口向下,x<1时,y随x的增大而增大.【解答】解:∵a=﹣1<0,∴二次函数图象开口向下,又对称轴是直线x=1,∴当x<1时,函数图象在对称轴的左边,y随x的增大增大.故选A.4.如图,二次函数y=ax2+bx+c(a≠0)的图象与x轴交于A、B两点,与y轴交于C点,且对称轴为x=1,点B坐标为(﹣1,0).则下面的四个结论:①2a+b=0;②4a﹣2b+c<0;③ac>0;④当y<0时,x<﹣1或x>2.其中正确的个数是()A.1B.2C.3D.4【考点】二次函数图象与系数的关系.【分析】根据对称轴为x=1可判断出2a+b=0正确,当x=﹣2时,4a﹣2b+c<0,根据开口方向,以及与y轴交点可得ac<0,再求出A点坐标,可得当y<0时,x<﹣1或x>3.【解答】解:∵对称轴为x=1,∴x=﹣=1,∴﹣b=2a,∴①2a+b=0,故此选项正确;∵点B坐标为(﹣1,0),∴当x=﹣2时,4a﹣2b+c<0,故此选项正确;∵图象开口向下,∴a<0,∵图象与y轴交于正半轴上,∴c>0,∴ac<0,故ac>0错误;∵对称轴为x=1,点B坐标为(﹣1,0),∴A点坐标为:(3,0),∴当y<0时,x<﹣1或x>3.,故④错误;故选:B.5.如图,AB是⊙O的弦,点C在圆上,已知∠OBA=40°,则∠C=()A.40°B.50°C.60°D.80°【考点】圆周角定理.【分析】首先根据等边对等角即可求得∠OAB的度数,然后根据三角形的内角和定理求得∠AOB的度数,再根据圆周角定理即可求解.【解答】解:∵OA=OB,∴∠OAB=∠OBA=40°,∴∠AOB=180°﹣40°﹣40°=100°.∴∠C=∠AOB=×100°=50°.故选B.6.如图,已知∠BOA=30°,M为OB边上一点,以M为圆心、2cm为半径作⊙M.点M在射线OB上运动,当OM=5cm时,⊙M与直线OA的位置关系是()A.相切B.相离C.相交D.不能确定【考点】直线与圆的位置关系.【分析】作MH⊥OA于H,如图,根据含30度的直角三角形三边的关系得到MH=OM=,则MH大于⊙M的半径,然后根据直线与圆的位置关系的判定方法求解.【解答】解:作MH⊥OA于H,如图,在Rt△OMH中,∵∠HOM=30°,∴MH=OM=,∵⊙M的半径为2,∴MH>2,∴⊙M与直线OA的位置关系是相离.故选B.7.如图,C是⊙O外一点,CA,CB分别与⊙O相切于点A,B,P是上一点,若∠C=x°,则∠APB的度数是()A.x°B.(90﹣)°C.(90﹣x)°D.°【考点】切线的性质;圆周角定理;圆内接四边形的性质.【分析】连接OA、OB,由CA,CB分别与⊙O相切于点A,B,根据切线的性质得到OA⊥CA,OB⊥CB,得到∠AOB=180°﹣∠C=180°﹣x°,再根据圆周角定理得到∠P=∠AOB,即可得到答案.【解答】解:连接OA、OB,如图,∵CA,CB分别与⊙O相切于点A,B,∴OA⊥CA,OB⊥CB,即∠OAC=∠OBC=90°,∴∠AOB=180°﹣∠C=180°﹣x°,∴∠P=∠AOB=(90﹣x)°.故选B.8.已知圆的半径是2,则该圆的内接正六边形的面积是()A.3B.9C.18D.36【考点】正多边形和圆.【分析】解题的关键要记住正六边形的特点,它被半径分成六个全等的等边三角形.【解答】解:连接正六边形的中心与各个顶点,得到六个等边三角形,等边三角形的边长是2,高为3,因而等边三角形的面积是3,∴正六边形的面积=18,故选C.9.在Rt△ABC中,∠C=90°,AC=12,BC=5,将△ABC绕边AC所在直线旋转一周得到圆锥,则该圆锥的侧面积是()A.25πB.65πC.90πD.130π【考点】圆锥的计算;勾股定理.【分析】运用公式s=πlr(其中勾股定理求解得到母线长l为13)求解.【解答】解:∵Rt△ABC中,∠C=90°,AC=12,BC=5,∴AB==13,∴母线长l=13,半径r为5,∴圆锥的侧面积是s=πlr=13×5×π=65π.故选B.10.在一幅长80厘米,宽50厘米的矩形风景画的四周镶一条金色的纸边,制成一幅矩形挂图,如图,如果要使整个挂图的面积是5400平方厘米,设金色纸边的宽为x厘米,那么满足的方程是()A.x2+130x﹣1400=0B.x2+65x﹣350=0C.x2﹣130x﹣1400=0D.x2﹣65x﹣350=0【考点】由实际问题抽象出一元二次方程.【分析】根据矩形的面积=长×宽,我们可得出本题的等量关系应该是:(风景画的长+2个纸边的宽度)×(风景画的宽+2个纸边的宽度)=整个挂图的面积,由此可得出方程.【解答】解:依题意,设金色纸边的宽为xcm,则(80+2x)(50+2x)=5400,整理得出:x2+65x﹣350=0.故选:B.二、填空题(每小题3分,共24分)11.方程x(2x+3)=0的根是x1=0,x2=﹣.【考点】解一元二次方程-因式分解法.【分析】利用因式分解法解方程.【解答】解:x=0或2x+3=0,所以x1=0,x2=﹣.故答案为x1=0,x2=﹣.12.将二次函数y=x2﹣4x+5化成y=(x﹣h)2+k的形式,则y=(x﹣2)2+1.【考点】二次函数的三种形式.【分析】将二次函数y=x2﹣4x+5的右边配方即可化成y=(x﹣h)2+k的形式.【解答】解:y=x2﹣4x+5,y=x2﹣4x+4﹣4+5,y=x2﹣4x+4+1,y=(x﹣2)2+1.故答案为:y=(x﹣2)2+1
本文标题:汕尾市陆河县2017届九年级上第三次月考数学试卷含答案解析
链接地址:https://www.777doc.com/doc-7500375 .html