您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 初三二次函数常见题型及解题策略
第1页共7页二次函数常见题型及解题策略1、两点间的距离公式:22BABAxxyyAB2、中点坐标:线段AB的中点C的坐标为:22BABAyyxx,3、一元二次方程有整数根问题,解题步骤如下:①用和参数的其他要求确定参数的取值范围;②解方程,求出方程的根;(两种形式:分式、二次根式)③分析求解:若是分式,分母是分子的因数;若是二次根式,被开方式是完全平方式。例:关于x的一元二次方程01222=-mxmx有两个整数根,5<m且m为整数,求m的值。4、二次函数与x轴的交点为整数点问题。(方法同上)例:若抛物线3132xmmxy与x轴交于两个不同的整数点,且m为正整数,试确定此抛物线的解析式。5、方程总有固定根问题,可以通过解方程的方法求出该固定根。举例如下:已知关于x的方程23(1)230mxmxm(m为实数),求证:无论m为何值,方程总有一个固定的根。解:当0m时,1x;当0m时,032m,mmx213,mx321、12x;综上所述:无论m为何值,方程总有一个固定的根是1。第2页共7页6、函数过固定点问题,举例如下:已知抛物线22mmxxy(m是常数),求证:不论m为何值,该抛物线总经过一个固定的点,并求出固定点的坐标。解:把原解析式变形为关于m的方程xmxy122;∴01022xxy,解得:11xy;∴抛物线总经过一个固定的点(1,-1)。(题目要求等价于:关于m的方程xmxy122不论m为何值,方程恒成立)小结..:关于x的方程bax有无数解00ba7、路径最值问题(待定的点所在的直线就是对称轴)(1)如图,直线1l、2l,点A在2l上,分别在1l、2l上确定两点M、N,使得MNAM之和最小。(2)如图,直线1l、2l相交,两个固定点A、B,分别在1l、2l上确定两点M、N,使得ANMNBM之和最小。(3)如图,BA、是直线l同旁的两个定点,线段a,在直线l上确定两点E、F(E在F的左侧),使得四边形AEFB的周长最小。第3页共7页8、在平面直角坐标系中求面积的方法:直接用公式、割补法9、函数的交点问题:二次函数(cbxaxy++=2)与一次函数(hkxy+=)(1)解方程组hkxycbxaxy+=++=2可求出两个图象交点的坐标。(2)解方程组hkxycbxaxy+=++=2,即02=-+-+hcxkbax,通过可判断两个图象的交点的个数有两个交点0>仅有一个交点0没有交点0<10、方程法(1)设:设主动点的坐标或基本线段的长度(2)表示:用含同一未知数的式子表示其他相关的数量(3)列方程或关系式11、几何分析法特别是构造“平行四边形”、“梯形”、“相似三角形”、“直角三角形”、“等腰三角形”等图形时,利用几何分析法能给解题带来方便。几何要求几何分析涉及公式应用图形跟平行有关的图形平移2121kkll=∥、2121xxyyk平行四边形矩形梯形跟直角有关的图形勾股定理逆定理利用相似、全等、平行、对顶角、互余、互补等22BABAxxyyAB直角三角形直角梯形矩形跟线段有关的图形利用几何中的全等、中垂线的性质等。22BABAxxyyAB等腰三角形全等等腰梯形跟角有关的图形利用相似、全等、平行、对顶角、互余、互补等第4页共7页1、(2012西城一模第25题)平面直角坐标系xOy中,抛物线244yaxaxac与x轴交于点A、点B,与y轴的正半轴交于点C,点A的坐标为(1,0),OB=OC,抛物线的顶点为D。(1)求此抛物线的解析式;(2)若此抛物线的对称轴上的点P满足∠APB=∠ACB,求点P的坐标;(3)Q为线段BD上一点,点A关于∠AQB的平分线的对称点为A,若2QBQA,求点Q的坐标和此时△QAA的面积。第5页共7页2、(2012东城二模第25题)如图,在平面直角坐标系xOy中,已知二次函数2+2yaxaxc的图像与y轴交于点30,C,与x轴交于A、B两点,点B的坐标为03,。(1)求二次函数的解析式及顶点D的坐标;(2)点M是第二象限内抛物线上的一动点,若直线OM把四边形ACDB分成面积为1:2的两部分,求出此时点M的坐标;(3)点P是第二象限内抛物线上的一动点,问:点P在何处时△CPB的面积最大?最大面积是多少?并求出此时点P的坐标。第6页共7页3、(2012海淀二模第24题)如图,在平面直角坐标系xOy中,抛物线xxmy222与x轴负半轴交于点A,顶点为B,且对称轴与x轴交于点C。(1)求点B的坐标(用含m的代数式表示);(2)D为OB中点,直线AD交y轴于E,若E(0,2),求抛物线的解析式;(3)在(2)的条件下,点M在直线OB上,且使得AMC的周长最小,P在抛物线上,Q在直线BC上,若以QPMA、、、为顶点的四边形是平行四边形,求点P的坐标。第7页共7页4、(2012东城二模第23题)已知关于x的方程2(1)(4)30mxmx。(1)若方程有两个不相等的实数根,求m的取值范围;(2)若正整数m满足822m,设二次函数2(1)(4)3ymxmx的图象与x轴交于AB、两点,将此图象在x轴下方的部分沿x轴翻折,图象的其余部分保持不变,得到一个新的图象;请你结合这个新的图象回答:当直线3ykx与此图象恰好有三个公共点时,求出k的值(只需要求出两个满足题意的k值即可)。
本文标题:初三二次函数常见题型及解题策略
链接地址:https://www.777doc.com/doc-7510734 .html