您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 高中教育 > 新授课:导数在研究函数中的应用(一)2010.3.15
导数在研究函数中的应用(一)2010.3.15____班姓名______1、(09广东文)函数xexxf)3()(的单调递增区间是()A.)2,(B.(0,3)C.(1,4)D.),2(2、设函数()yfx在定义域内可导,()yfx的图象如图1所示,则导函数()yfx可能为()3、若函数32()6fxxaxx在(0,1)内单调递减,则实数a的取值范围是()A.1aB.1aC.1aD.01a4、函数3()fxaxx在R上为减函数,则实数a的取值范围是______________.5、求函数2()2lnfxxx的单调区间.xyO图1xyOAxyOBxyOCyODx6、(09北京理)设函数()(0)kxfxxek.(1)求曲线()yfx在点(0,(0))f处的切线方程;(2)求函数()fx的单调区间;(3)若函数()fx在区间(1,1)内单调递增,求k的取值范围.选作题7、(09嘉兴一中一模)下列图像中有一个是函数1)1(31)(223xaaxxxf(aR且0a)的导数)(xf的图像,则)1(f()A.31B.31C.73D.31或35参考答案:1.D2.D3.A4.0a5.增区间1(,2),减区间1(0,)26.yx;0k时,增区间()1,k,减区间(1,)k0k时,增区间(1,)k,减区间()1,k;[1,0)(0,1]7.B
本文标题:新授课:导数在研究函数中的应用(一)2010.3.15
链接地址:https://www.777doc.com/doc-7527415 .html