您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 抚顺市新宾县2017届九年级上期中数学试卷含答案解析
2016-2017学年辽宁省抚顺市新宾县九年级(上)期中数学试卷一、选择题(共10小题,每小题3分,满分30分)1.下列方程是关于x的一元二次方程的是()A.ax2+bx+c=0B.+4x=6C.x2﹣3x=x2﹣2D.(x+1)(x﹣1)=2x2.下列汽车标志可以看作是中心对称图形的是()A.B.C.D.3.平面直角坐标系内一点P(﹣2,3)关于原点对称的点的坐标是()A.(3,﹣2)B.(2,3)C.(﹣2,﹣3)D.(2,﹣3)4.若某商品的原价为100元,连续两次涨价后的售价为144元,设两次平增长率为x.则下面所列方程正确的是()A.100(1﹣x)2=144B.100(1+x)2=144C.100(1﹣2x)2=144D.100(1﹣x)2=1445.对抛物线:y=﹣x2+2x﹣3而言,下列结论正确的是()A.与x轴有两个交点B.开口向上C.与y轴的交点坐标是(0,3)D.顶点坐标是(1,﹣2)6.若将函数y=2x2的图象向左平移1个单位,再向上平移3个单位,可得到的抛物线是()A.y=2(x﹣1)2﹣3B.y=2(x﹣1)2+3C.y=2(x+1)2﹣3D.y=2(x+1)2+37.若关于x的一元二次方程x2﹣2x+kb+1=0有两个不相等的实数根,则一次函数y=kx+b的大致图象可能是()A.B.C.D.8.若5k+20<0,则关于x的一元二次方程x2+4x﹣k=0的根的情况是()A.没有实数根B.有两个相等的实数根C.有两个不相等的实数根D.无法判断9.已知二次函数y=kx2﹣2x﹣1的图象和x轴有交点,则k的取值范围是()A.k>﹣1B.k<1C.k≥﹣l且k≠0D.k<1且k≠010.如图是二次函数y=ax2+bx+c图象的一部分,且过点A(3,0),二次函数图象的对称轴是x=1.下列结论:①b2>4ac;②ac>0;③a﹣b+c>0;④4a+2b+c<0.其中错误的结论有()A.1个B.2个C.3个D.4个二、填空题(共8小题,每小题3分,满分24分)11.二次函数y=﹣(x+1)2+8的开口方向是.12.已知x1,x2是方程x2+2x﹣k=0的两个实数根,则x1+x2=.13.小明用30厘米的铁丝围成一斜边等于13厘米的直角三角形,设该直角三角形一直角边长x厘米,根据题意列方程为.14.如图,在平面直角坐标系中,将线段AB绕点A按逆时针方向旋转90°后,得到线段AB′,则点B′的坐标为.15.已知一元二次方程(a+3)x2+4ax+a2﹣9=0有一个根为0,则a=.16.如图,将Rt△ABC(其中∠B=35°,∠C=90°)绕点A按顺时针方向旋转到△AB1C1的位置,使得点C、A、B1在同一条直线上,那么旋转角的度数是.17.抛物线y=2x2﹣bx+3的对称轴是直线x=1,则该函数的最小值是.18.图1是棱长为a的小正方体,图2、图3出这样相同的小正方体摆放而成,按照这样的方法继续摆放,由上而下分别叫第一层、第二层、…,第n层,第n层的小正方体的个数为s.(提示:第一层时,s=1;第二层时,s=3)则第n层时,s=(用含n的式子表示)三、解答题(共8小题,满分96分)19.解方程:(1)x2+4x+2=0(配方法)(2)5x2+5x=﹣1﹣x(公式法)20.如图所示,方格纸中的每个小方格都是边长为1个单位长度的正方形,建立平面直角坐标系,△ABC的顶点均在格点上.(不写作法)①以原点O为对称中心,画出△ABC关于原点O对称的△A1B1C1,并写出B1的坐标;②再把△A1B1C1绕点C1,顺时针旋转90°,得到△A2B2C2,请你画出△A2B2C2,并写出B2的坐标.21.关于x的一元二次方程x2+2x+k+1=0的实数解是x1和x2.(1)求k的取值范围;(2)如果x1+x2﹣x1x2<﹣1且k为整数,求k的值.22.如图,直线y=﹣x+1和抛物线y=x2+bx+c都经过点A(2,0)和点B(k,)(1)k的值是;(2)求抛物线的解析式;(3)不等式x2+bx+c>﹣x+1的解集是.23.有一座抛物线形拱桥,校下面在正常水位时AB宽20米,水位上升3米就达到警戒线CD,这时水面宽度为10米.(1)在如图的坐标系中,求抛物线的表达式;(2)若洪水到来是水位以0.2米/时的速度上升,从正常水位开始,再过几小时能到达桥面?24.某商场销售一批名牌衬衫,平均每天可售出20件,每件赢利40元,为了扩大销售,增加利润,尽量减少库存,商场决定采取适当的降价措施.经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件;(1)若商场平均每天要赢利1200元,每件衬衫应降价多少元?(2)每件衬衫降价多少元时,商场平均每天赢利最多?25.如图所示,在△ABC中,∠C=90°,AC=6cm,BC=8cm,点P从点A出发沿边AC向点C以1cm/s的速度移动,点Q从C点出发沿CB边向点B以2cm/s的速度移动.(1)如果P、Q同时出发,几秒钟后,可使△PCQ的面积为8平方厘米?(2)是否存在某一时刻,使△PCQ的面积等于△ABC面积的一半,并说明理由.(3)点P、Q在移动过程中,是否存在某一时刻,使得△PCQ的面积达到最大值,并说明利理由.26.已知,如图,抛物线y=ax2+3ax+c(a>0)与y轴交于点C,与x轴交于A,B两点,点A在点B左侧.点B的坐标为(1,0),OC=3OB.(1)求抛物线的解析式;(2)若点D是线段AC下方抛物线上的动点,求四边形ABCD面积的最大值.2016-2017学年辽宁省抚顺市新宾县九年级(上)期中数学试卷参考答案与试题解析一、选择题(共10小题,每小题3分,满分30分)1.下列方程是关于x的一元二次方程的是()A.ax2+bx+c=0B.+4x=6C.x2﹣3x=x2﹣2D.(x+1)(x﹣1)=2x【考点】一元二次方程的定义.【分析】根据一元二次方程的概念.只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程,一般形式是ax2+bx+c=0(且a≠0).特别要注意a≠0的条件进行解答.【解答】解:A、当a≠0时,是关于x的一元二次方程,故此选项错误;B、不是一元二次方程,故此选项错误;C、不是一元二次方程,故此选项错误;D、是一元二次方程,故此选项正确;故选:D.【点评】此题主要考查了一元二次方程的定义,判断一个方程是否是一元二次方程应注意抓住5个方面:“化简后”;“一个未知数”;“未知数的最高次数是2”;“二次项的系数不等于0”;“整式方程”.2.下列汽车标志可以看作是中心对称图形的是()A.B.C.D.【考点】中心对称图形.【分析】根据中心对称图形的概念对各选项分析判断即可得解.【解答】解:A、不是中心对称图形,故本选项错误;B、是中心对称图形,故本选项正确;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误.故选B.【点评】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3.平面直角坐标系内一点P(﹣2,3)关于原点对称的点的坐标是()A.(3,﹣2)B.(2,3)C.(﹣2,﹣3)D.(2,﹣3)【考点】关于原点对称的点的坐标.【专题】常规题型.【分析】根据关于原点对称的点的横坐标互为相反数,纵坐标互为相反数解答.【解答】解:点P(﹣2,3)关于原点对称的点的坐标是(2,﹣3).故选:D.【点评】本题主要考查了关于原点对称的点的坐标的特征,熟记特征是解题的关键.4.若某商品的原价为100元,连续两次涨价后的售价为144元,设两次平增长率为x.则下面所列方程正确的是()A.100(1﹣x)2=144B.100(1+x)2=144C.100(1﹣2x)2=144D.100(1﹣x)2=144【考点】由实际问题抽象出一元二次方程.【分析】解决此类两次变化问题,可利用公式a(1+x)2=c,那么两次涨价后售价为100(1+x)2,然后根据题意可得出方程.【解答】解:根据题意可列方程:100(1+x)2=144,故选:B.【点评】本题考查一元二次方程的应用,解决此类两次变化问题,可利用公式a(1+x)2=c,其中a是变化前的原始量,c是两次变化后的量,x表示平均每次的增长率.5.对抛物线:y=﹣x2+2x﹣3而言,下列结论正确的是()A.与x轴有两个交点B.开口向上C.与y轴的交点坐标是(0,3)D.顶点坐标是(1,﹣2)【考点】二次函数的性质;抛物线与x轴的交点.【专题】计算题.【分析】根据△的符号,可判断图象与x轴的交点情况,根据二次项系数可判断开口方向,令函数式中x=0,可求图象与y轴的交点坐标,利用配方法可求图象的顶点坐标.【解答】解:A、∵△=22﹣4×(﹣1)×(﹣3)=﹣8<0,抛物线与x轴无交点,本选项错误;B、∵二次项系数﹣1<0,抛物线开口向下,本选项错误;C、当x=0时,y=﹣3,抛物线与y轴交点坐标为(0,﹣3),本选项错误;D、∵y=﹣x2+2x﹣3=﹣(x﹣1)2﹣2,∴抛物线顶点坐标为(1,﹣2),本选项正确.故选D.【点评】本题考查了抛物线的性质与解析式的关系.关键是明确抛物线解析式各项系数与性质的联系.6.若将函数y=2x2的图象向左平移1个单位,再向上平移3个单位,可得到的抛物线是()A.y=2(x﹣1)2﹣3B.y=2(x﹣1)2+3C.y=2(x+1)2﹣3D.y=2(x+1)2+3【考点】二次函数图象与几何变换.【分析】易得新抛物线的顶点,根据顶点式及平移前后二次项的系数不变可得新抛物线的解析式.【解答】解:原抛物线的顶点为(0,0),向左平移1个单位,再向上平移3个单位,那么新抛物线的顶点为(﹣1,3);可设新抛物线的解析式为y=(x﹣h)2+k,代入得:y=2(x+1)2+3,故选D.【点评】主要考查了二次函数图象与几何变换,抛物线平移不改变二次项的系数的值,解决本题的关键是得到新抛物线的顶点坐标.7.若关于x的一元二次方程x2﹣2x+kb+1=0有两个不相等的实数根,则一次函数y=kx+b的大致图象可能是()A.B.C.D.【考点】根的判别式;一次函数的图象.【分析】根据一元二次方程x2﹣2x+kb+1=0有两个不相等的实数根,得到判别式大于0,求出kb的符号,对各个图象进行判断即可.【解答】解:∵x2﹣2x+kb+1=0有两个不相等的实数根,∴△=4﹣4(kb+1)>0,解得kb<0,A.k>0,b>0,即kb>0,故A不正确;B.k>0,b<0,即kb<0,故B正确;C.k<0,b<0,即kb>0,故C不正确;D.k<0,b=0,即kb=0,故D不正确;故选:B.【点评】本题考查的是一元二次方程根的判别式和一次函数的图象,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.8.若5k+20<0,则关于x的一元二次方程x2+4x﹣k=0的根的情况是()A.没有实数根B.有两个相等的实数根C.有两个不相等的实数根D.无法判断【考点】根的判别式.【专题】计算题.【分析】根据已知不等式求出k的范围,进而判断出根的判别式的值的正负,即可得到方程解的情况.【解答】解:∵5k+20<0,即k<﹣4,∴△=16+4k<0,则方程没有实数根.故选:A.【点评】此题考查了一元二次方程根的判别式,根的判别式的值大于0,方程有两个不相等的实数根;根的判别式的值等于0,方程有两个相等的实数根;根的判别式的值小于0,方程没有实数根.9.已知二次函数y=kx2﹣2x﹣1的图象和x轴有交点,则k的取值范围是()A.k>﹣1B.k<1C.k≥﹣l且k≠0D.k<1且k≠0【考点】抛物线与x轴的交点.【分析】由于二次函数与x轴有交点,故二次函数对应的一元二次方程kx2﹣2x﹣1=0中,△≥0,解不等式即可求出k的取值范围,由二次函数定义可知k≠0.【解答】解:∵二次函数y=kx2﹣2x﹣1的图象和x轴有交点,∴△=b2﹣4ac=4﹣4×k×(﹣1)≥0,且k≠0,∴k≥﹣1,且k≠0.故选C.【
本文标题:抚顺市新宾县2017届九年级上期中数学试卷含答案解析
链接地址:https://www.777doc.com/doc-7542681 .html