您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 2017年秋人教版九年级上《第23章旋转》检测题含答案
第23章检测题时间:120分钟满分:120分一、选择题(每小题3分,共30分)1.(2016·随州)随着我国经济快速发展,轿车进入百姓家庭,小明同学在街头观察出下列四种汽车标志,其中既是中心对称图形,又是轴对称图形的是(C)2.在平面内,将一个图形绕一个定点沿某个方向转动一个角度,这样的图形运动称为旋转.下列图形中不能由一个图形通过旋转而构成的是(C)3.将下面左图方格中的图形绕O点顺时针旋转90°得到的图形是(B)4.如图,如果正方形ABCD旋转后能与正方形CDEF重合,那么图形所在的平面内可作旋转中心的点共有(C)A.1个B.2个C.3个D.4个错误!错误!,第5题图)错误!,第6题图),第7题图)5.如图,△ABC绕着点O按顺时针方向旋转90°后到达了△CDE的位置,下列说法中不正确的是(C)A.线段AB与线段CD互相垂直B.线段AC与线段CE互相垂直C.点A与点E是两个三角形的对应点D.线段BC与线段DE互相垂直6.如图,是用围棋子摆出的图案(围棋子的位置用有序数对表示,如点A在(5,1)),如果再摆一黑一白两枚棋子,使9枚棋子组成的图案既是轴对称图形又是中心对称图形,则下列摆放正确的是(B)A.黑(3,3),白(3,1)B.黑(3,1),白(3,3)C.黑(1,5),白(5,5)D.黑(3,2),白(3,3)7.如图,直线y=-43x+4与x轴、y轴分别交于A,B两点,把△AOB绕点A顺时针旋转90°后得到△AO′B′,则点B′的坐标是(D)A.(3,4)B.(4,5)C.(4,3)D.(7,3)8.如图,已知△ABC与△CDA关于点O对称,过O任作直线EF分别交AD,BC于点E,F,下面的结论:①点E和点F,点B和点D是关于中心O的对称点;②直线BD必经过点O;③四边形ABCD是中心对称图形;④四边形DEOC与四边形BFOA的面积必相等;⑤△AOE与△COF成中心对称,其中正确的个数为(D)A.2个B.3个C.4个D.5个,第8题图),第9题图),第10题图),第11题图)9.如图,△EFG与△E′F′G′均为等边三角形,且E(3,2),E′(-3,-2),通过对图形的观察,下列说法正确的是(C)A.△EFG与△E′F′G′关于y轴对称B.△EFG与△E′F′G′关于x轴对称C.△EFG与△E′F′G′关于原点O对称D.以F,E′,F′,E为顶点的四边形是轴对称图形10.如图,在方格纸上,△DEF是由△ABC绕定点P顺时针旋转得到的.如果用(2,1)表示方格纸上A点的位置,(1,2)表示B点的位置,那么点P的位置为(A)A.(5,2)B.(2,5)C.(2,1)D.(1,2)二、填空题(每小题3分,共24分)11.(2016·邵阳)将等边△CBA绕点C顺时针旋转∠α得到△CB′A′,使得B,C,A′三点在同一直线上,如图所示,则∠α的大小是__120°__.12.如图,平行四边形ABCD中,对角线AC,BD相交于点O,则图中成中心对称的三角形共有__4__对.,第12题图),第13题图),第14题图),第15题图)13.在方格纸上建立如图所示的平面直角坐标系,将△ABO绕点O按顺时针方向旋转90°得△A′B′O,则点A的对应点A′的坐标为__(2,3)__.14.如图,大圆的面积为4π,大圆的两条直径互相垂直,则图中阴影部分的面积的和为__π__.15.如图,阴影部分组成的图案既是关于x轴成轴对称的图形又是关于坐标原点O成中心对称的图形,若点A的坐标是(1,3),则点M和点N的坐标分别是__M(-1,-3),N(1,-3)__.16.将如图所示的图案绕其中心旋转n°时与原图案完全重合,那么n的最小值是__120__.,第16题图),第17题图),第18题图)17.(2016·达州)如图,P是等边三角形ABC内一点,将线段AP绕点A顺时针旋转60°得到线段AQ,连接BQ.若PA=6,PB=8,PC=10,则四边形APBQ的面积为__24+93__.18.如图①为Rt△AOB,∠AOB=90°,其中OA=3,OB=4,将△AOB沿x轴依次以A,B,O旋转中心顺时针旋转,分别得图②,图③,…,则旋转到图⑩时,直角顶点的坐标是__(36,0)__.三、解答题(共66分)19.(8分)直角坐标系第二象限内的点P(x2+2x,3)与另一点Q(x+2,y)关于原点对称,试求x+2y的值.解:根据题意,得(x2+2x)+(x+2)=0,y=-3.∴x1=-1,x2=-2.∵点P在第二象限,∴x2+2x<0,∴x=-1,∴x+2y=-720.(8分)在如图所示的直角坐标系中,解答下列问题:(1)分别写出A,B两点的坐标;(2)将△ABC绕点A顺时针旋转90°,画出旋转后的△AB1C1.解:(1)A(2,0),B(-1,-4)(2)图略21.(8分)如图,△ABE为等腰三角形,经旋转后得到△FDG,其中四边形ABCD为正方形,试问:(1)旋转中心为哪个点?(2)旋转角为多少度?(3)指出∠E的对应角及BE的对应边.解:(1)点C(2)90°(3)∠E的对应角为∠G,线段BE的对应边为线段DG22.(9分)如图,在正方形ABCD中,E为CD上一点,F为BC延长线上一点,CE=CF.(1)△DCF可以看成是△BCE绕点C旋转某个角度得到的吗?(2)若∠CEB=60°,求∠EFD的度数.解:(1)△DCF可以看成是△BCE绕点C顺时针旋转90°而得到的(2)∵∠CEB=60°,∴∠CFD=60°,∵∠DCF=90°,CE=CF,∴∠CFE=∠CEF=45°,∠EFD=∠CFD-∠CFE=60°-45°=15°23.(9分)如图,在▱ABCD中,AB⊥AC,AB=1,BC=5,对角线AC,BD交于O点,将直线AC绕点O顺时针旋转,分别交于BC,AD于点E,F.(1)证明:当旋转角为90°时,四边形ABEF是平行四边形;(2)试说明在旋转过程中,线段AF与EC总保持相等;(3)在旋转过程中,四边形BEDF可能是菱形吗?如果不可能,请说明理由;如果可能,说明理由并求出此时AC绕点O顺时针旋转的度数.解:(1)当旋转角为90°时,EF∥AB,AF∥BE,∴四边形ABEF是平行四边形(2)可以通过证三角形全等来说明AF与EC总保持相等(3)可以成菱形.当EF⊥BD时,四边形BEDF为菱形,此时由题意知∠AOB=45°,∴只需∠AOF=45°即可,证明略24.(12分)(2016·巴中)如图,方格中,每个小正方形的边长都是单位1,△ABC在平面直角坐标系中的位置如图.(1)画出将△ABC向右平移2个单位得到的△A1B1C1;(2)画出将△ABC绕点O顺时针方向旋转90°得到的△A2B2C2;(3)求△A1B1C1与△A2B2C2重合部分的面积.解:(1)(2)略(3)B2C2与A1B1相交于点E,B2A2与A1B1相交于点F,∵B2(0,1),C2(2,3),B1(1,0),A1(2,5),A2(5,0),∴直线A1B1为y=5x-5,直线B2C2为y=x+1,直线A2B2为y=-15x+1,由y=5x-5,y=x+1,解得x=32,y=52,∴点E(32,52),由y=5x-5,y=-15x+1,解得x=1513,y=1013,∴点F(1513,1013),∴B2F=(1513)2+(313)2=31326,EF=(926)2+(4526)2=92626,∴S△B2EF=12B2F·EF=12×31326×92626=2726.∴△A1B1C1与△A2B2C2重合部分的面积为272625.(12分)如图①,将一个边长为2的正方形ABCD和一个长为2、宽为1的矩形CEFD拼在一起,构成一个大的矩形ABEF.现将小矩形CEFD绕点C顺时针旋转至CE′F′D′,旋转角为α.(1)当点D′恰好落在EF边上时,求旋转角α的值;(2)如图②,G为BC中点,且0°<α<90°,求证:GD′=E′D;(3)小矩形CEFD绕点C顺时针旋转一周的过程中,△DCD′与△CBD′能否全等?若能,直接写出旋转角α的值;若不能,说明理由.解:(1)∵矩形CEFD绕点C顺时针旋转至CE′F′D′,∴CD′=CD=2,在Rt△CED′中,CD′=2,CE=1,∴∠CD′E=30°,∵CD∥EF,∴∠α=30°(2)∵G为BC中点,∴CG=1,∴CG=CE,∵矩形CEFD绕点C顺时针旋转至CE′F′D′,∴∠D′CE′=∠DCE=90°,CE=CE′=CG,∴∠GCD′=∠DCE′=90°+α,在△GCD′和△E′CD中,CD′=CD,∠GCD′=∠E′CD,CG=CE′,∴△GCD′≌△E′CD(SAS),∴GD′=E′D(3)能.理由:∵四边形ABCD为正方形,∴CB=CD,∵CD=CD′,∴△BCD′与△DCD′为腰相等的两个等腰三角形,当∠BCD′=∠DCD′时,△BCD′≌△DCD′,当△BCD′与△DCD′为钝角三角形时,α=360°-90°2=135°,当△BCD′与△DCD′为锐角三角形时,α=360°-90°2=315°,即旋转角α的值为135°或315°时,△BCD′与△DCD′全等
本文标题:2017年秋人教版九年级上《第23章旋转》检测题含答案
链接地址:https://www.777doc.com/doc-7542928 .html