您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 重庆市江北区2018届九年级上期末模拟数学试卷含答案解析
2017-2018学年重庆市江北区九年级(上)期末模拟数学试卷一、选择题(共10题;共30分)1.下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.2.如图,四边形ABCD内接于半圆O,已知∠ADC=140°,则∠AOC的大小是()A.40°B.60°C.70°D.80°3.如果反比例函数的图象经过点(-1,-2),则k的值是()A.2B.-2C.-3D.34.如图,已知:如图,在直角坐标系中,有菱形OABC,A点的坐标为(10,0),对角线OB、AC相交于D点,双曲线y=(x>0)经过D点,交BC的延长线于E点,且OB•AC=160,有下列四个结论:①双曲线的解析式为y=(x>0);②E点的坐标是(5,8);③sin∠COA=;④AC+OB=12.其中正确的结论有()A.1个B.2个C.3个D.4个5.某县大力推进义务教育均衡发展,加强学校标准化建设,计划用三年时间对全县学校的设施和设备进行全面改造,2014年县政府已投资5亿元人民币,若每年投资的增长率相同,预计2016年投资7.2亿元人民币,那么每年投资的增长率为()A.20%B.40%C.-220%D.30%6.随着居民经济收入的不断提高以及汽车业的快速发展,家用汽车已越来越多地进入普通家庭,抽样调查显示,截止2015年底某市汽车拥有量为16.9万辆.己知2013年底该市汽车拥有量为10万辆,设2013年底至2015年底该市汽车拥有量的平均增长率为x,根据题意列方程得()A.10(1+x)2=16.9B.10(1+2x)=16.9C.10(1﹣x)2=16.9D.10(1﹣2x)=16.97.二次根式有意义,则x的取值范围是()A.x≤﹣7B.x≥﹣7C.x<﹣7D.x>﹣78.如图,AB是⊙O的切线,B为切点,AO与⊙O交于点C,若∠BAO=30°,则∠OCB的度数为()A.30°B.60°C.50°D.40°9.已知函数y=ax2﹣2ax﹣1(a是常数,a≠0),下列结论正确的是()A.当a=1时,函数图象过点(﹣1,1)B.当a=﹣2时,函数图象与x轴没有交点C.若a>0,则当x≥1时,y随x的增大而减小D.若a<0,则当x≤1时,y随x的增大而增大10.以点O为圆心,以5cm为半径作⊙O,若线段OP的长为8cm,那么OP的中点A与⊙O的位置关系是()A.A点在⊙O外B.A点在⊙O上C.A点在⊙O内D.不能确定二、填空题(共8题;共24分)11.如图,⊙O的直径CD过弦EF的中点G,∠EOD=40°,则∠DCF=________.12.如图,点E是△ABC的内心,AE的延长线和△ABC的外接圆相交于点D,连接BD、BE、CE,若∠CBD=32°,则∠BEC的度数为________.13.计算:=________.14.在△ABC中,BA=BC,∠BAC=α,M是AC的中点,P是线段BM上的动点,将线段PA绕点P顺时针旋转2α得到线段PQ.(1)若α=60°,且点P与点M重合(如图1),线段CQ的延长线交射线BM于点D,此时∠CDB的度数为________(2)在图2中,点P不与点B、M重合,线段CQ的延长线交射线BM于点D,则∠CDB的度数为(用含α的代数式表示)________.(3)对于适当大小的α,当点P在线段BM上运动到某一位置(不与点B、M重合)时,能使得线段CQ的延长线与射线BM交于点D,且PQ=DQ,则α的取值范围是________15.如图,直线l与半径为4的⊙O相切于点A,P是⊙O上的一个动点(不与点A重合),过点P作PB⊥l,垂足为B,连接PA.设PA=x,PB=y,则(x﹣y)的最大值是________.16.如图所示,以边长为2的等边△ABO的顶点O为坐标原点,点B在x轴上,则经过点A的反比例函数的表达式为________17.已知⊙O半径为3cm,点P到圆心O的距离为3cm,则点P与⊙O的位置关系是________.18.如图,△ABC中,∠C是直角,AB=12cm,∠ABC=60°,将△ABC以点B为中心顺时针旋转,使点C旋转到AB的延长线上的点D处,则AC边扫过的图形(阴影部分)的面积是________.三、解答题(共6题;共36分)19.解方程:x2﹣x﹣12=0.20.某批乒乓球的质量检验结果如下:抽取的乒乓球数n200500100015002000优等品频数m18847194614261898优等品频率0.9400.9420.9460.9510.949(1)画出这批乒乓球“优等品”频率的折线统计图;(2)这批乒乓球“优等品”的概率的估计值是多少?(3)从这批乒乓球中选择5个黄球、13个黑球、22个红球,它们除颜色外都相同,将它们放入一个不透明的袋中.①求从袋中摸出一个球是黄球的概率;②现从袋中取出若干个黑球,并放入相同数量的黄球,搅拌均匀后使从袋中摸出一个是黄球的概率不小于,问至少取出了多少个黑球?21.在Rt△ABC中,∠C=90°,BC=3,AC=4,以C点为圆心、BC长为半径画圆,请你判断点A与⊙C的位置关系.22.如图,在⊙O中,AB为弦,C、D在AB上,且AC=BD,请问图中有几个等腰三角形?把它们分别写出来,并说明理由.23.D、E是圆O的半径OA、OB上的点,CD⊥OA、CE⊥OB,CD=CE,则弧CA与弧CB的关系是?24.如图,2×2网格(每个小正方形的边长为1)中,有A,O,B,C,D,E,F,H,G九个格点.抛物线l的解析式为y=x2+bx+c.(1)若l经过点O(0,0)和B(1,0),则b=,c=;它还经过的另一格点的坐标为.(2)若l经过点H(﹣1,1)和G(0,1),求它的解析式及顶点坐标;通过计算说明点D(1,2)是否在l上.(3)若l经过这九个格点中的三个,直接写出所有满足这样的抛物线的条数.四、综合题(共10分)25.如图,在平面直角坐标系中,直角△ABC的三个顶点分别是A(﹣3,1),B(0,3),C(0,1)(1)将△ABC以点C为旋转中心旋转180°,画出旋转后对应的△A1B1C1;(2)分别连结AB1、BA1后,求四边形AB1A1B的面积.2017-2018学年重庆市江北区九年级(上)期末模拟数学试卷参考与答案与试题解析一、选择题1.【答案】D【考点】中心对称及中心对称图形【解析】【解答】解:A、是轴对称图形,但不是中心对称图形,故A错误;B、是中心对称图形,不是轴对称图形,故B错误;C、是轴对称图形,不是中心对称图形,故C错误;D、既是轴对称图形,也是中心对称图形,故D正确.故选:D.【分析】依据轴对称图形的定义和中心对称图形的定义回答即可.2.【答案】D【考点】圆周角定理,圆内接四边形的性质【解析】【解答】解:∵四边形ABCD是圆内接四边形,∴∠ADC+∠B=180°,又∠ADC=140°,∴∠B=40°,∴∠AOC=2∠B=80°,故选:D.【分析】根据圆内接四边形的性质求出∠B的度数,根据圆周角定理得到答案.3.【答案】D【考点】待定系数法求反比例函数解析式【解析】【分析】根据反比例函数图象上点的坐标特征,将(-1,-2)代入已知反比例函数的解析式,列出关于系数k的方程,通过解方程即可求得k的值.【解答】根据题意,得-2=,即2=k-1,解得,k=3.故选D.【点评】此题考查的是用待定系数法求反比例函数的解析式,是中学阶段的重点.解答此题时,借用了“反比例函数图象上点的坐标特征”这一知识点.4.【答案】B【考点】反比例函数的应用【解析】【解答】解:过点C作CF⊥x轴于点F,∵OB•AC=160,A点的坐标为(10,0),∴OA•CF=OB•AC=×160=80,菱形OABC的边长为10,∴CF==8,在Rt△OCF中,∵OC=10,CF=8,∴OF==6,∴C(6,8),∵点D时线段AC的中点,∴D点坐标为,即(8,4),∵双曲线y=(x>0)经过D点,∴4=,即k=32,∴双曲线的解析式为:y=(x>0),故①错误;∵CF=8,∴直线CB的解析式为y=8,∴,解得x=4,y=8,∴E点坐标为(4,8),故②错误;∵CF=8,OC=10,∴sin∠COA=,故③正确;∵A(10,0),C(6,8),∴AC=,∵OB•AC=160,∴OB=,∴AC+OB=4+8=12,故④正确.故选:B.【分析】过点C作CF⊥x轴于点F,由OB•AC=160可求出菱形的面积,由A点的坐标为(10,0)可求出CF的长,由勾股定理可求出OF的长,故可得出C点坐标,对角线OB、AC相交于D点可求出D点坐标,用待定系数法可求出双曲线y=(x>0)的解析式,由反比例函数的解析式与直线BC的解析式联立即可求出E点坐标;由sin∠COA=可求出∠COA的正弦值;根据A、C两点的坐标可求出AC的长,由OB•AC=160即可求出OB的长.5.【答案】A【考点】一元二次方程的应用【解析】【解答】设每年投资的增长率为x,根据题意,得:5(1+x)2=7.2,解得:x1=0.2=20%,x2=-2.2(舍去),故每年投资的增长率为为20%.故选:A.【分析】先设每年投资的增长率为x,再根据2014年县政府已投资5亿元人民币,若每年投资的增长率相同,预计2016年投资7.2亿元人民币,列方程求解.此题主要考查了一元二次方程的实际应用,解题的关键是掌握增长率问题中的一般公式为a(1+x)n,其中n为共增长了几年,a为第一年的原始数据,x是增长率.6.【答案】A【考点】一元二次方程的应用【解析】【解答】解:设2013年底至2015年底该市汽车拥有量的平均增长率为x,根据题意,可列方程:10(1+x)2=16.9,故选:A.【分析】根据题意可得:2013年底该市汽车拥有量×(1+增长率)2=2015年底某市汽车拥有量,根据等量关系列出方程即可.此题主要考查了由实际问题抽象出一元二次方程,关键是掌握平均变化率的方法,若设变化前的量为a,变化后的量为b,平均变化率为x,则经过两次变化后的数量关系为a(1±x)2=b.7.【答案】B【考点】二次根式有意义的条件【解析】【解答】解:由题意,得x+7≥0,解得x≥﹣7,故选:B.【分析】根据被开房数是非负数,可得答案.8.【答案】B【考点】切线的性质,切线的判定与性质【解析】【解答】解:∵AB是⊙O的切线,B为切点,∴∠OBA=90°,∵∠BAO=30°,∴∠O=60°,∵OB=OC,∴△OBC是等边三角形,∴∠OCB=60°,故选:B.【分析】根据切线性质得出∠OBA=90°,求出∠O=60°,证出△OBC是等边三角形,即可得出结果.9.【答案】D【考点】二次函数的性质【解析】【解答】解:A、∵当a=1,x=﹣1时,y=1+2﹣1=2,∴函数图象不经过点(﹣1,1),故错误;B、当a=﹣2时,∵△=42﹣4×(﹣2)×(﹣1)=8>0,∴函数图象与x轴有两个交点,故错误;C、∵抛物线的对称轴为直线x=﹣=1,∴若a>0,则当x≥1时,y随x的增大而增大,故错误;D、∵抛物线的对称轴为直线x=﹣=1,∴若a<0,则当x≤1时,y随x的增大而增大,故正确;故选D.【分析】把a=1,x=﹣1代入y=ax2﹣2ax﹣1,于是得到函数图象不经过点(﹣1,1),根据△=8>0,得到函数图象与x轴有两个交点,根据抛物线的对称轴为直线x=﹣=1判断二次函数的增减性.10.【答案】C【考点】点与圆的位置关系【解析】【解答】解:∵OP=8cm,A是线段OP的中点,∴OA=4cm,小于圆的半径5cm,∴点A在圆内.故选C.【分析】知道OP的长,点A是OP的中点,得到OA的长与半径的关系,求出点A与圆的位置关系.二、填空题11.【答案】20°【考点】圆周角定理【解析】【解答】解:∵⊙O的直径CD过弦EF的中点G,∴弧ED=弧DF(垂径定理),∴∠DCF=∠EOD(等弧所对的圆周角是圆心角的一半),∴∠DCF=20°.【分析】欲求∠DCF,又已知一圆心角,可利用圆周角与圆心角的关系求解.12.【答案】122°【考点】圆周角定理,三角形的内切圆与内心【解析】【解答】解:在⊙O中,
本文标题:重庆市江北区2018届九年级上期末模拟数学试卷含答案解析
链接地址:https://www.777doc.com/doc-7543099 .html