您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 【解析版】2014-2015年农业大学附中九年级上第一次月考试卷
2014-2015学年山西农业大学附中九年级(上)第一次月考数学试卷一、单项选择题(每小题3分,共30分)1.已知x=1是一元二次方程x2﹣2mx+1=0的一个解,则m的值是()A.1B.0C.0或1D.0或﹣12.已知a,b为一元二次方程x2+2x﹣9=0的两个根,那么a2+a﹣b的值为()A.﹣7B.0C.7D.113.用配方法将代数式a2+4a﹣5变形,结果正确的是()A.(a+2)2﹣1B.(a+2)2﹣5C.(a+2)2+4D.(a+2)2﹣94.根据下列表格中二次函数y=ax2+bx+c的自变量x与函数值y的对应值,判断方程ax2+bx+c=0(a≠0,a,b,c为常数)的一个解x的范围是()x6.176.186.196.20y=ax2+bx+c﹣0.03﹣0.010.020.04A.6<x<6.17B.6.17<x<6.18C.6.18<x<6.19D.6.19<x<6.205.某商品经过两次连续降价,每件售价由原来的55元降到了35元.设平均每次降价的百分率为x,则下列方程中正确的是()A.55(1+x)2=35B.35(1+x)2=55C.55(1﹣x)2=35D.35(1﹣x)2=556.二次函数y=(x+1)2+2的最小值是()A.2B.1C.﹣3D.7.二次函数y=﹣3x2﹣6x+5的图象的顶点坐标是()A.(﹣1,8)B.(1,8)C.(﹣1,2)D.(1,﹣4)8.把抛物线y=﹣x2向左平移1个单位,然后向上平移3个单位,则平移后抛物线的解析式为()A.y=﹣(x﹣1)2﹣3B.y=﹣(x+1)2﹣3C.y=﹣(x﹣1)2+3D.y=﹣(x+1)2+39.如图:抛物线y=ax2+bx+c(a≠0)的图象与x轴的一个交点是(﹣2,0),顶点是(1,3).下列说法中不正确的是()A.抛物线的对称轴是x=1B.抛物线的开口向下C.抛物线与x轴的另一个交点是(2,0)D.当x=1时,y有最大值是310.如图,二次函数y=ax2+bx+c的图象与y轴正半轴相交,其顶点坐标为(),下列结论:①ac<0;②a+b=0;③4ac﹣b2=4a;④a+b+c<0.其中正确结论的个数是()A.1B.2C.3D.4二、填空题(每小题3分,共18分)11.已知一元二次方程有一个根是2,那么这个方程可以是(填上一个符合条件的方程即可答案不惟一).12.已知2﹣是一元二次方程x2﹣4x+c=0的一个根,则方程的另一个根是.13.甲、乙两同学解方程x2+px+q=0,甲看错了一次项系数,得根为2和7;乙看错了常数项,得根为1和﹣10,则原方程为.14.如图所示,抛物线y=ax2+bx+c(a≠0)与x轴的两个交点分别为A(﹣1,0)和B(2,0),当y<0时,x的取值范围是.15.已知二次函数y=2x2+8x+7的图象上有点A(﹣2,y1),B(﹣5,y2),C(﹣1,y3),则y1、y2、y3的大小关系为.16.如图,是二次函数y=ax2+bx+c(a≠0)的图象的一部分,给出下列命题:①a+b+c=0;②b>2a;③ax2+bx+c=0的两根分别为﹣3和1;④a﹣2b+c>0.其中正确的命题是.(只要求填写正确命题的序号)三、解答题(72分)17.(12分)(2014秋•山西校级月考)我们已经学习了一元二次方程的三种解法:因式分解法,配方法和公式法.请选择你认为适当的方法解下列方程.①x2﹣3x+1=0;②x2﹣3x=0;③x2﹣2x=4.18.关x的一元二次方程(x﹣2)(x﹣3)=m有两个实数根x1、x2,(1)求m的取值范围;(2)若x1、x2满足等式x1x2﹣x1﹣x2+1=0,求m的值.19.已知关于x的方程x2+ax+a﹣2=0(1)若该方程的一个根为1,求a的值及该方程的另一根;(2)求证:不论a取何实数,该方程都有两个不相等的实数根.20.一次函数y=x﹣3的图象与x轴、y轴分别交于点A、B.一个二次函数y=x2+bx+c的图象经过点A、B.(1)求点A、B的坐标;(2)求二次函数的解析式及它的最小值.21.将一条长为20cm的铁丝剪成两段,并以每一段铁丝的长度为周长做成一个正方形.(1)要使这两个正方形的面积之和等于17cm2,那么这段铁丝剪成两段后的长度分别是多少?(2)两个正方形的面积之和可能等于12cm2吗?若能,求出两段铁丝的长度;若不能,请说明理由.22.已知抛物线y=ax2+bx+c(a≠0)经过点B(2,0)和点C(0,8),且它的对称轴是直线x=﹣2.(1)求抛物线与x轴的另一交点A的坐标;(2)求此抛物线的解析式.23.(10分)(2014秋•山西校级月考)一快餐店试销某种套餐,试销一段时间后发现,每份套餐的成本为5元,该店每天固定支出费用为600元(不含套餐成本).若每份售价不超过10元时,每天可销售400份;若每份售价超过10元,每提高1元,每天的销售量就减少40份.为了便于结算,每份套餐的售价x(元)取整数,用y(元)表示该店日净收入.(日净收入=每天的销售额﹣套餐成本﹣每天固定支出)(1)求y与x的函数关系式;(2)该店既要吸引顾客,使每天销售额最大,又要有较高的日净收入.按此要求,每份套餐的售价应定为多少元?此时日净收入多少?24.(10分)(2014秋•新泰市期末)如图,抛物线y=mx2﹣2mx﹣3m(m>0)与x轴交于A、B两点,与y轴交于C点.(1)请求出抛物线顶点M的坐标(用含m的代数式表示),A、B两点的坐标;(2)经探究可知,△BCM与△ABC的面积比不变,试求出这个比值.2014-2015学年山西农业大学附中九年级(上)第一次月考数学试卷参考答案与试题解析一、单项选择题(每小题3分,共30分)1.已知x=1是一元二次方程x2﹣2mx+1=0的一个解,则m的值是()A.1B.0C.0或1D.0或﹣1考点:一元二次方程的解.分析:本题根据一元二次方程的根的定义、一元二次方程的定义求解.把x=1代入方程式即可求解.解答:解:把x=1代入方程x2﹣2mx+1=0,可得1﹣2m+1=0,得m=1,故选A.点评:本题考查的是一元二次方程的根即方程的解的定义.把求未知系数的问题转化为方程求解的问题.2.已知a,b为一元二次方程x2+2x﹣9=0的两个根,那么a2+a﹣b的值为()A.﹣7B.0C.7D.11考点:根与系数的关系;一元二次方程的解.专题:压轴题.分析:根据一元二次方程的根与系数的关系及解的意义得到,两根之和与关于a的等式,把代数式变形后,代入两根之和与关于a的等式,求得代数式的值.解答:解:∵a,b为一元二次方程x2+2x﹣9=0的两个根,∴a2+2a﹣9=0,a+b=﹣2,∴a2+a﹣b=(a2+2a﹣9)﹣(a+b)+9=11.故本题选D.点评:本题主要考查一元二次方程ax2+bx+c=0(a≠0)的根与系数关系:两根之和是,两根之积是.3.用配方法将代数式a2+4a﹣5变形,结果正确的是()A.(a+2)2﹣1B.(a+2)2﹣5C.(a+2)2+4D.(a+2)2﹣9考点:配方法的应用.分析:此题考查了配方法,若二次项系数为1,则常数项是一次项系数的一半的平方,若二次项系数不为1,则可先提取二次项系数,将其化为1后再计算.解答:解:a2+4a﹣5=a2+4a+4﹣4﹣5=(a+2)2﹣9,故选D.点评:此题考查了学生的应用能力,解题时要注意配方法的步骤.注意在变形的过程中不要改变式子的值.4.根据下列表格中二次函数y=ax2+bx+c的自变量x与函数值y的对应值,判断方程ax2+bx+c=0(a≠0,a,b,c为常数)的一个解x的范围是()x6.176.186.196.20y=ax2+bx+c﹣0.03﹣0.010.020.04A.6<x<6.17B.6.17<x<6.18C.6.18<x<6.19D.6.19<x<6.20考点:抛物线与x轴的交点.专题:压轴题.分析:利用二次函数和一元二次方程的性质.解答:解:由表格中的数据看出﹣0.01和0.02更接近于0,故x应取对应的范围.故选C.点评:该题考查了用表格的方式求函数的值的范围.5.某商品经过两次连续降价,每件售价由原来的55元降到了35元.设平均每次降价的百分率为x,则下列方程中正确的是()A.55(1+x)2=35B.35(1+x)2=55C.55(1﹣x)2=35D.35(1﹣x)2=55考点:由实际问题抽象出一元二次方程.专题:增长率问题.分析:如果设平均每次降价的百分率为x,则第一次降价后的价格是55(1﹣x),再在这个数的基础上降价x,即可得到35元,可列出方程.解答:解:设平均每次降价的百分率为x,则根据题意可列方程为:55(1﹣x)2=35;故选C.点评:掌握好增长率问题的一般规律,找到关键描述语,找到等量关系是解决问题的关键.6.二次函数y=(x+1)2+2的最小值是()A.2B.1C.﹣3D.考点:二次函数的最值.分析:根据函数的解析式直接解答即可.解答:解:由二次函数的解析式可知此函数的最小值是2.故选A.点评:此题比较简单,解答此题的关键是熟知二次函数顶点式即y=a(x+h)2+k的形式.7.二次函数y=﹣3x2﹣6x+5的图象的顶点坐标是()A.(﹣1,8)B.(1,8)C.(﹣1,2)D.(1,﹣4)考点:二次函数的性质.分析:利用二次函数y=ax2+bx+c(a≠0)的顶点坐标为(﹣,),可求函数的顶点坐标.解答:解:∵a=﹣3、b=﹣6、c=5,∴﹣=﹣1,=8,即顶点坐标是(﹣1,8).故选A.点评:本题考查了二次函数的顶点坐标.8.把抛物线y=﹣x2向左平移1个单位,然后向上平移3个单位,则平移后抛物线的解析式为()A.y=﹣(x﹣1)2﹣3B.y=﹣(x+1)2﹣3C.y=﹣(x﹣1)2+3D.y=﹣(x+1)2+3考点:二次函数图象与几何变换.专题:压轴题.分析:利用二次函数平移的性质.解答:解:当y=﹣x2向左平移1个单位时,顶点由原来的(0,0)变为(﹣1,0),当向上平移3个单位时,顶点变为(﹣1,3),则平移后抛物线的解析式为y=﹣(x+1)2+3.故选:D.点评:本题主要考查二次函数y=ax2、y=a(x﹣h)2、y=a(x﹣h)2+k的关系问题.9.如图:抛物线y=ax2+bx+c(a≠0)的图象与x轴的一个交点是(﹣2,0),顶点是(1,3).下列说法中不正确的是()A.抛物线的对称轴是x=1B.抛物线的开口向下C.抛物线与x轴的另一个交点是(2,0)D.当x=1时,y有最大值是3考点:二次函数的性质.分析:根据二次函数的性质,结合图象,逐一判断.解答:解:观察图象可知:A、∵顶点坐标是(1,3),∴抛物线的对称轴是x=1,正确;B、从图形可以看出,抛物线的开口向下,正确;C、∵图象与x轴的一个交点是(﹣2,0),顶点是(1,3),∴1﹣(﹣2)=3,1+3=4,即抛物线与x轴的另一个交点是(4,0),错误;D、当x=1时,y有最大值是3,正确.故选C.点评:主要考查了二次函数的性质,要会根据a的值判断开口方向,根据顶点坐标确定对称轴,掌握二次函数图象的对称性.10.如图,二次函数y=ax2+bx+c的图象与y轴正半轴相交,其顶点坐标为(),下列结论:①ac<0;②a+b=0;③4ac﹣b2=4a;④a+b+c<0.其中正确结论的个数是()A.1B.2C.3D.4考点:二次函数图象与系数的关系.专题:计算题;压轴题.分析:根据二次函数图象反映出的数量关系,逐一判断正确性.解答:解:根据图象可知:①a<0,c>0∴ac<0,正确;②∵顶点坐标横坐标等于,∴=,∴a+b=0正确;③∵顶点坐标纵坐标为1,∴=1;∴4ac﹣b2=4a,正确;④当x=1时,y=a+b+c>0,错误.正确的有3个.故选C.点评:本题主要考查了二次函数的性质,会根据图象获取所需要的信息.掌握函数性质灵活运用.二、填空题(每小题3分,共18分)11.已知一元二次方程有一个根是2,那么这个方程可以是x2=4(填上一个符合条件的方程即可答案不惟一).考点:一元二次方程的
本文标题:【解析版】2014-2015年农业大学附中九年级上第一次月考试卷
链接地址:https://www.777doc.com/doc-7543133 .html