您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 【解析版】师范学院附中2015届九年级上第一次月考数学试卷
安微师范学院附中2015届九年级上学期第一次月考数学试卷一、选择题(每题4分,共40分)1.(4分)下列方程,是一元二次方程的是()①3x2+x=20,②2x2﹣3xy+4=0,③x2=4,④x2=0,⑤x2﹣3x﹣4=0.A.①②B.①②④⑤C.①③④D.①④⑤2.(4分)(1998•上海)关于x的方程ax2﹣2x+1=0中,如果a<0,那么方程根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.没有实数根D.不能确定3.(4分)若关于x的一元二次方程(a+1)x2+x+a2﹣1=0的一个根是0,则a的值为()A.1B.﹣1C.1或﹣1D.4.(4分)已知抛物线y=x2﹣x﹣1与x轴的一个交点为(m,0),则代数式m2﹣m+2014的值为()A.2012B.2013C.2014D.20155.(4分)将抛物线y=x2平移得到抛物线y=(x+2)2,则这个平移过程正确的是()A.向左平移2个单位B.向右平移2个单位C.向上平移2个单位D.向下平移2个单位6.(4分)已知关于x的方程x2+bx+a=0的一个根是﹣a(a≠0),则a﹣b值为()A.﹣1B.0C.1D.27.(4分)某商品经过两次降价,由每件100元调至81元,则平均每次降价的百分率是()A.8.5%B.9%C.9.5%D.10%8.(4分)已知a≠0,在同一直角坐标系中,函数y=ax与y=ax2的图象有可能是()A.B.C.D.9.(4分)抛物线y=2x2,y=﹣2x2,共有的性质是()A.开口向下B.对称轴是y轴C.都有最高点D.y随x的增大而增大10.(4分)如图,已知二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列4个结论:①abc<0;②b<a+c;③4a+2b+c>0;④b2﹣4ac>0其中正确结论的有()A.①②③B.①②④C.①③④D.②③④二、填空题(每题5分,共25分)11.(5分)某厂今年一月份新产品的研发资金为a元,以后每月新产品的研发资金与上月相比增长率都是x,则该厂今年三月份新产品的研发资金y(元)关于x的函数关系式为y=.12.(5分)一元二次方程2x2﹣3x+k=0有两个不相等的实数根,则k的取值范围是.13.(5分)方程(x+1)(x﹣2)=x+1的解是.14.(5分)如图,抛物线y=ax2+bx+c(a>0)的对称轴是过点(1,0)且平行于y轴的直线,若点P(4,0)在该抛物线上,则4a﹣2b+c的值为.15.(5分)如图的一座拱桥,当水面宽AB为12m时,桥洞顶部离水面4m,已知桥洞的拱形是抛物线,以水平方向为x轴,建立平面直角坐标系,若选取点A为坐标原点时的抛物线解析式是y=﹣(x﹣6)2+4,则选取点B为坐标原点时的抛物线解析式是.三、解答题(共85分)16.(10分)解下列一元二次方程:(1)3x2﹣4x﹣1=0(2)4x2﹣8x+1=0(用配方法)17.(8分)已知:关于x的方程2x2+kx﹣1=0.(1)求证:方程有两个不相等的实数根;(2)若方程的一个根是﹣1,求另一个根及k值.18.(8分)已知二次函数y=x2﹣4x+3.(1)用配方法求其图象的顶点C的坐标,并描述该函数的函数值随自变量的增减而变化的情况;(2)求函数图象与x轴的交点A,B的坐标,及△ABC的面积.19.(10分)一元二次方程x2+2x+k﹣1=0的实数解是x1和x2.(1)求k的取值范围;(2)如果y=+﹣x1x2,求y的最小值.20.(10分)如图,已知抛物线y=ax2﹣x+c与x轴相交于A、B两点,并与直线y=x﹣2交于B、C两点,其中点C是直线y=x﹣2与y轴的交点,连接AC.(1)求抛物线的解析式;(2)证明:△ABC为直角三角形.21.(13分)在2014年巴西世界杯足球赛前夕,某体育用品店购进一批单价为40元的球服,如果按单价60元销售,那么一个月内可售出240套.根据销售经验,提高销售单价会导致销售量的减少,即销售单价每提高5元,销售量相应减少20套.设销售单价为x(x≥60)元,销售量为y套.(1)求出y与x的函数关系式.(2)当销售单价为多少元时,月销售额为14000元;(3)当销售单价为多少元时,才能在一个月内获得最大利润?最大利润是多少?[参考公式:抛物线y=ax2+bx+c(a≠0)的顶点坐标是].22.(12分)如果二次函数的二次项系数为l,则此二次函数可表示为y=x2+px+q,我们称[p,q]为此函数的特征数,如函数y=x2+2x+3的特征数是[2,3].(1)若一个函数的特征数为[﹣2,1],求此函数图象的顶点坐标.(2)探究下列问题:①若一个函数的特征数为[4,﹣1],将此函数的图象先向右平移1个单位,再向上平移1个单位,求得到的图象对应的函数的特征数.②若一个函数的特征数为[2,3],问此函数的图象经过怎样的平移,才能使得到的图象对应的函数的特征数为[3,4]?23.(14分)复习课中,教师给出关于x的函数y=2kx2﹣(4k+1)x﹣k+1(k是实数).教师:请独立思考,并把探索发现的与该函数有关的结论(性质)写到黑板上.学生思考后,黑板上出现了一些结论.教师作为活动一员,又补充一些结论,并从中选出以下四条:①存在函数,其图象经过(1,0)点;②函数图象与坐标轴总有三个不同的交点;③当x>1时,不是y随x的增大而增大就是y随x的增大而减小;④若函数有最大值,则最大值必为正数,若函数有最小值,则最小值必为负数.教师:请你分别判断四条结论的真假,并给出理由.最后简单写出解决问题时所用的数学方法.安微师范学院附中2015届九年级上学期第一次月考数学试卷参考答案与试题解析一、选择题(每题4分,共40分)1.(4分)下列方程,是一元二次方程的是()①3x2+x=20,②2x2﹣3xy+4=0,③x2=4,④x2=0,⑤x2﹣3x﹣4=0.A.①②B.①②④⑤C.①③④D.①④⑤考点:一元二次方程的定义.分析:本题根据一元二次方程的定义解答.一元二次方程必须满足四个条件:(1)未知数的最高次数是2;(2)二次项系数不为0;(3)是整式方程;(4)含有一个未知数.由这四个条件对四个选项进行验证,满足这四个条件者为正确答案.解答:解:①该方程符合一元二次方程的定义.故①是一元二次方程;②该方程中含有2个未知数.故②不是一元二次方程;③该方程是分式方程.故③不是一元二次方程;④该方程符合一元二次方程的定义.故④是一元二次方程;⑤该方程符合一元二次方程的定义.故⑤是一元二次方程;综上所述,是一元二次方程的是①④⑤.故选D.点评:本题考查了一元二次方程的概念,判断一个方程是否是一元二次方程,首先要看是否是整式方程,然后看化简后是否是只含有一个未知数且未知数的最高次数是2.2.(4分)(1998•上海)关于x的方程ax2﹣2x+1=0中,如果a<0,那么方程根的情况是()A.有两个相等的实数根B.有两个不相等的实数根C.没有实数根D.不能确定考点:根的判别式.专题:计算题;压轴题.分析:由a<0,得到原方程为一元二次方程,再计算△=b2﹣4ac=22﹣4a=4﹣4a,可得到△>0,根据根的判别式即可得到原方程的根的情况.解答:解:∵a<0,∴原方程为一元二次方程;∵△=b2﹣4ac=22﹣4a=4﹣4a,而a<0,即﹣4a>0,∴△>0,∴原方程有两个不相等的实数根.故选B.点评:本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.也考查了一元二次方程的定义.3.(4分)若关于x的一元二次方程(a+1)x2+x+a2﹣1=0的一个根是0,则a的值为()A.1B.﹣1C.1或﹣1D.考点:一元二次方程的解.分析:把x=0代入方程(a+1)x2+x+a2﹣1=0得出a2﹣1=0,求出a=±1,再根据一元二次方程的定义判断即可.解答:解:把x=0代入方程(a+1)x2+x+a2﹣1=0得:a2﹣1=0,解得:a=±1,∵方程为一元二次方程,∴a+1≠0,∴a≠﹣1,∴a=1,故选A.点评:本题考查了一元二次方程的解和一元二次方程的定义的应用,关键是能根据题意得出方程a2﹣1=0和a+1≠0.4.(4分)已知抛物线y=x2﹣x﹣1与x轴的一个交点为(m,0),则代数式m2﹣m+2014的值为()A.2012B.2013C.2014D.2015考点:抛物线与x轴的交点.分析:把x=m代入方程x2﹣x﹣1=0求得m2﹣m=1,然后将其整体代入代数式m2﹣m+2014,并求值.解答:解:∵抛物线y=x2﹣x﹣1与x轴的一个交点为(m,0),∴m2﹣m﹣1=0,解得m2﹣m=1.∴m2﹣m+2014=1+2014=2015.故选:D.点评:本题考查了抛物线与x轴的交点.解题时,注意“整体代入”数学思想的应用,减少了计算量.5.(4分)将抛物线y=x2平移得到抛物线y=(x+2)2,则这个平移过程正确的是()A.向左平移2个单位B.向右平移2个单位C.向上平移2个单位D.向下平移2个单位考点:二次函数图象与几何变换.分析:根据图象左移加,可得答案.解答:解:将抛物线y=x2平移得到抛物线y=(x+2)2,则这个平移过程正确的是向左平移了2个单位,故选:A.点评:本题考查了二次函数图象与几何变换,函数图象平移规律是:左加右减,上加下减.6.(4分)已知关于x的方程x2+bx+a=0的一个根是﹣a(a≠0),则a﹣b值为()A.﹣1B.0C.1D.2考点:一元二次方程的解.专题:方程思想.分析:由一元二次方程的根与系数的关系x1•x2=、以及已知条件求出方程的另一根是﹣1,然后将﹣1代入原方程,求a﹣b的值即可.解答:解:∵关于x的方程x2+bx+a=0的一个根是﹣a(a≠0),∴x1•(﹣a)=a,即x1=﹣1,∴1﹣b+a=0,∴a﹣b=﹣1.故选A.点评:本题主要考查了一元二次方程的解.解答该题时,还借用了一元二次方程的根与系数的关系x1•x2=.7.(4分)某商品经过两次降价,由每件100元调至81元,则平均每次降价的百分率是()A.8.5%B.9%C.9.5%D.10%考点:一元二次方程的应用.专题:增长率问题.分析:降低后的价格=降低前的价格×(1﹣降低率),如果设平均每次降价的百分率是x,则第一次降低后的价格是(1﹣x),那么第二次后的价格是(1﹣x)2,即可列出方程求解.解答:解:设平均每次降价的百分率是x,则100×(1﹣x)2=81,解之得x=0.1或1.9(不合题意,舍去).则x=0.1=10%答:平均每次降价的百分率是10%.故选:D.点评:本题类似增长率问题,规律为:基数•(1﹣降低率)n=n次降低后到达的数.找到关键描述语,找到等量关系准确的列出方程是解决问题的关键.8.(4分)已知a≠0,在同一直角坐标系中,函数y=ax与y=ax2的图象有可能是()A.B.C.D.考点:二次函数的图象;正比例函数的图象.专题:数形结合.分析:本题可先由一次函数y=ax图象得到字母系数的正负,再与二次函数y=ax2的图象相比较看是否一致.(也可以先固定二次函数y=ax2图象中a的正负,再与一次函数比较.)解答:解:A、函数y=ax中,a>0,y=ax2中,a>0,但当x=1时,两函数图象有交点(1,a),故A错误;B、函数y=ax中,a<0,y=ax2中,a>0,故B错误;C、函数y=ax中,a<0,y=ax2中,a<0,但当x=1时,两函数图象有交点(1,a),故C正确;D、函数y=ax中,a>0,y=ax2中,a<0,故D错误.故选:C.点评:函数中数形结合思想就是:由函数图象确定函数解析式各项系数的性质符号,由函数解析式各项系数的性质符号画出函数图象的大致形状.9.(4分)抛物线y=2x2,y=﹣2x2,共有的性质是()A.开口向下B.对称轴是y轴C.都有最高点D.y随x的增大而增大考点:二次函数的性质.分析:根据二次函数的性质解题.解答:解:(1)y=2x2开口向上,对称
本文标题:【解析版】师范学院附中2015届九年级上第一次月考数学试卷
链接地址:https://www.777doc.com/doc-7543205 .html