您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 古田县新城中学2015届九年级上第一次月考数学试卷及答案解析
福建省宁德市古田县新城中学2015届九年级上学期第一次月考数学试卷一、选择题:(每小题4分,共40分)1.(4分)一元二次方程x2﹣4=0的解是()A.x=2B.x=﹣2C.x1=2,x2=﹣2D.x1=,x2=﹣2.(4分)有6张背面相同的扑克牌,正面上的数字分别是4、5、6、7、8、9,如果将这6张牌背面向上洗匀后,从中任意抽取1张,那么这张牌正面上的数字是3的倍数的概率为()A.B.C.D.3.(4分)如图,小聪在作线段AB的垂直平分线时,他是这样操作的:分别以A和B为圆心,大于AB的长为半径画弧,两弧相交于C、D,则直线CD即为所求.根据他的作图方法可知四边形ADBC一定是()A.矩形B.菱形C.正方形D.等腰梯形4.(4分)下列说法不正确的是()A.一组邻边相等的矩形是正方形B.对角线相等的菱形是正方形C.对角线互相垂直的矩形是正方形D.有一个角是直角的平行四边形是正方形5.(4分)用配方法解方程x2+4x+1=0,配方后的方程是()A.(x+2)2=3B.(x﹣2)2=3C.(x﹣2)2=5D.(x+2)2=56.(4分)如图,在△ABC中,点D、E分别在AB、AC边上,DE∥BC,若AD=6,BD=2,AE=9,则EC的长是()A.8B.6C.4D.37.(4分)如图,已知菱形ABCD的边长为2,∠DAB=60°,则对角线BD的长是()A.1B.C.2D.28.(4分)如图,小明周末到公园走到十字路口处,记不清前面哪条路通往公园,那么他随意选一条路能一次选对路的概率是()A.B.C.D.09.(4分)某超市一月份的营业额为200万元,已知第一季度的总营业额共1000万元,如果平均每月增长率为x,则由题意列方程应为()A.200(1+x)2=1000B.200+200×2x=1000C.200+200×3x=1000D.200[1+(1+x)+(1+x)2]=100010.(4分)如图,等边△ABC的边长为3,P为BC上一点,且BP=1,D为AC上一点,若∠APD=60°,则CD的长为()A.B.C.D.二、填空题:(每小题3分,共24分)11.(3分)一元二次方程3﹣4x2=0的二次项系数是.12.(3分)已知=,则=.13.(3分)某口袋中有红色、黄色、蓝色玻璃球共72个,小明通过多次摸球试验后,发现摸到红球、黄球、蓝球的频率为35%、25%和40%,估计口袋中黄色玻璃球有个.14.(3分)在两个布袋中分别装有三个小球,这三个小球的颜色分别为红色、白色、绿色,其他没有区别.把两袋小球都搅匀后,再分别从两袋中各取出一个小球,求取出两个相同颜色小球的概率是.15.(3分)如果关于x的方程x2﹣x+k=0(k为常数)有两个相等的实数根,那么k=.16.(3分)点C是线段AB的黄金分割点(AC>BC),AB=2,则AC=.(用根号表示)17.(3分)如图,在矩形ABCD中,点E、F分别在边AD、DC上,△ABE∽△DEF,AB=6,AE=9,DE=2,则EF的长为.18.(3分)正方形OABC位于坐标系如图边长为8,在OA上有一点D坐标(6,0).在对角线OB上有一动点P,使PA+PD最短,则最短距离为.三、解答题:(共86分)19.(12分)解方程:(1)(2x﹣1)2=9;(2)x2+3x=5.20.(8分)如图,在一块长为22米,宽为17米的矩形地面上,要修建同样宽的两条互相垂直的道路(两条道路各与矩形的一条边平行),剩余部分种上草坪,使草坪面积为300平方米,那么道路的宽度应该是多少?21.(9分)如图,∠CAB=∠CBD,AB=4,CB=5,AC=6,BD=7.5.求CD的长.22.(9分)某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利44元,为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出5件.若商场平均每天要盈利1600元,每件衬衫应降价多少元?23.(12分)如图所示,四边形ABCD是平行四边形,AC、BD交于点O,∠1=∠2.(1)求证:四边形ABCD是矩形;(2)若∠BOC=120°,AB=4cm,求四边形ABCD的面积.24.(10分)小英和小强做一个“配色”的游戏.下图是两个可以自由转动的转盘,每个转盘被分成面积相等的几个扇形,并涂上图中所示的颜色.同时转动两个转盘,如果转盘A转出了红色,转盘B转出了蓝色,或者转盘A转出了蓝色,转盘B转出了红色,则红色和蓝色在一起配成紫色,这种情况下小英获胜;同样,蓝色和黄色在一起配成绿色,这种情况下小强获胜;在其它情况下,则小英、小强不分胜负.(1)利用列表或树状图的方法表示此游戏所有可能出现的结果;(2)此游戏的规则,对双方都公平吗?如果公平,请说明理由;如果不公平,请修改游戏规则,使得游戏对双方都公平.25.(13分)探究问题:(1)方法感悟:如图①,在正方形ABCD中,点E,F分别为DC,BC边上的点,且满足∠EAF=45°,连接EF,求证DE+BF=EF.感悟解题方法,并完成下列填空:将△ADE绕点A顺时针旋转90°得到△ABG,此时AB与AD重合,由旋转可得:AB=AD,BG=DE,∠1=∠2,∠ABG=∠D=90°,∴∠ABG+∠ABF=90°+90°=180°,因此,点G,B,F在同一条直线上.∵∠EAF=45°∴∠2+∠3=∠BAD﹣∠EAF=90°﹣45°=45°.∵∠1=∠2,∴∠1+∠3=45°.即∠GAF=∠.又AG=AE,AF=AF∴△GAF≌.∴=EF,故DE+BF=EF.(2)方法迁移:如图②,将Rt△ABC沿斜边翻折得到△ADC,点E,F分别为DC,BC边上的点,且∠EAF=∠DAB.试猜想DE,BF,EF之间有何数量关系,并证明你的猜想.(3)问题拓展:如图③,在四边形ABCD中,AB=AD,E,F分别为DC,BC上的点,满足∠EAF=∠DAB,试猜想当∠B与∠D满足什么关系时,可使得DE+BF=EF.请直接写出你的猜想(不必说明理由).26.(13分)已知四边形ABCD是正方形,O为正方形对角线的交点,一动点P从B开始,沿射线BC运动,连接DP,作CN⊥DP于点M,且交直线AB于点N,连接OP,ON.(当P在线段BC上时,如图1:当P在BC的延长线上时,如图2)(1)请从图1,图2中任选一图证明下面结论:①BN=CP;②OP=ON,且OP⊥ON;(2)设AB=4,BP=x,试确定以O、P、B、N为顶点的四边形的面积y与x的函数关系.福建省宁德市古田县新城中学2015届九年级上学期第一次月考数学试卷参考答案与试题解析一、选择题:(每小题4分,共40分)1.(4分)一元二次方程x2﹣4=0的解是()A.x=2B.x=﹣2C.x1=2,x2=﹣2D.x1=,x2=﹣考点:解一元二次方程-直接开平方法.分析:观察发现方程的两边同时加4后,左边是一个完全平方式,即x2=4,即原题转化为求4的平方根.解答:解:移项得:x2=4,∴x=±2,即x1=2,x2=﹣2.故选:C.点评:(1)用直接开方法求一元二次方程的解的类型有:x2=a(a≥0);ax2=b(a,b同号且a≠0);(x+a)2=b(b≥0);a(x+b)2=c(a,c同号且a≠0).法则:要把方程化为“左平方,右常数,先把系数化为1,再开平方取正负,分开求得方程解.(2)用直接开方法求一元二次方程的解,要仔细观察方程的特点.2.(4分)有6张背面相同的扑克牌,正面上的数字分别是4、5、6、7、8、9,如果将这6张牌背面向上洗匀后,从中任意抽取1张,那么这张牌正面上的数字是3的倍数的概率为()A.B.C.D.考点:概率公式.分析:由有6张背面相同的扑克牌,正面上的数字分别是4、5、6、7、8、9,且是3的倍数的有6与9,直接利用概率公式求解即可求得答案.解答:解:∵有6张背面相同的扑克牌,正面上的数字分别是4、5、6、7、8、9,且是3的倍数的有6与9,∴从中任意抽取1张,那么这张牌正面上的数字是3的倍数的概率为:=.故选D.点评:此题考查了概率公式的应用.注意用到的知识点为:概率=所求情况数与总情况数之比.3.(4分)如图,小聪在作线段AB的垂直平分线时,他是这样操作的:分别以A和B为圆心,大于AB的长为半径画弧,两弧相交于C、D,则直线CD即为所求.根据他的作图方法可知四边形ADBC一定是()A.矩形B.菱形C.正方形D.等腰梯形考点:菱形的判定;线段垂直平分线的性质.专题:压轴题.分析:根据垂直平分线的画法得出四边形ADBC四边的关系进而得出四边形一定是菱形.解答:解:∵分别以A和B为圆心,大于AB的长为半径画弧,两弧相交于C、D,∴AC=AD=BD=BC,∴四边形ADBC一定是菱形,故选:B.点评:此题主要考查了线段垂直平分线的性质以及菱形的判定,得出四边形四边关系是解决问题的关键.4.(4分)下列说法不正确的是()A.一组邻边相等的矩形是正方形B.对角线相等的菱形是正方形C.对角线互相垂直的矩形是正方形D.有一个角是直角的平行四边形是正方形考点:正方形的判定.专题:证明题.分析:根据正方形的判定方法对角线互相垂直平分且相等的四边形是正方形对各个选项进行分析,从而得到答案.解答:解:A、矩形是对边平行且相等,加上一组邻边相等,正好属于正方形,故A选项正确;B、菱形的对角线是相互垂直的,加上对角线相等,正好符合对角线互相垂直平分且相等的四边形是正方形这一性质,故B选项正确;C、矩形的对角线是相等且相互平分的,加上互相垂直,正好符合对角线互相垂直平分且相等的四边形是正方形这一性质,故C选项正确;D、有一个角是直角的平行四边形,是符合矩形的判定方法,故D选项不正确;故选D.点评:此题主要考查学生对正方形的判定方法的理解及运用.5.(4分)用配方法解方程x2+4x+1=0,配方后的方程是()A.(x+2)2=3B.(x﹣2)2=3C.(x﹣2)2=5D.(x+2)2=5考点:解一元二次方程-配方法.专题:计算题.分析:方程常数项移到右边,两边加上4变形后,即可得到结果.解答:解:方程移项得:x2+4x=﹣1,配方得:x2+4x+4=3,即(x+2)2=3.故选A.点评:此题考查了解一元二次方程﹣配方法,利用配方法解方程时,首先将方程常数项移到右边,二次项系数化为1,然后方程两边加上一次项系数一半的平方,左边化为完全平方式,右边化为非负常数,开方转化为两个一元一次方程来求解.6.(4分)如图,在△ABC中,点D、E分别在AB、AC边上,DE∥BC,若AD=6,BD=2,AE=9,则EC的长是()A.8B.6C.4D.3考点:平行线分线段成比例.分析:根据题意知两平行线DE∥BC间的线段成比例=,据此可以求得AC的长度,所以EC=AC﹣AE.解答:解:∵AD=6,BD=2,∴AB=AD+BD=8;又∵DE∥BC,AE=9,∴=,∴AC=12,∴EC=AC﹣AE=12﹣9=3;故选:D.点评:此题主要考查平行线分线段成比例定理的理解及运用.解题时,需要根据图示求得AB的长度.7.(4分)如图,已知菱形ABCD的边长为2,∠DAB=60°,则对角线BD的长是()A.1B.C.2D.2考点:菱形的性质.分析:利用菱形的性质以及等边三角形的判定方法得出△DAB是等边三角形,进而得出BD的长.解答:解:∵菱形ABCD的边长为2,∴AD=AB=2,又∵∠DAB=60°,∴△DAB是等边三角形,∴AD=BD=AB=2,则对角线BD的长是2.故选:C.点评:此题主要考查了菱形的性质以及等边三角形的判定,得出△DAB是等边三角形是解题关键.8.(4分)如图,小明周末到公园走到十字路口处,记不清前面哪条路通往公园,那么他随意选一条路能一次选对路的概率是()A.B.C.D.0考点:概率公式.分析:由小明周末到公园走到十字路口处,则可知共有3条路供选择,直接利用概率公式求解即可求得答案.解答:解:∵小明周末到公园走到十字路口处,∴他随意选一条路能一次选对路的概率是:.故选B.点评:此题考查了概率公式的应用
本文标题:古田县新城中学2015届九年级上第一次月考数学试卷及答案解析
链接地址:https://www.777doc.com/doc-7543262 .html