您好,欢迎访问三七文档
当前位置:首页 > 中学教育 > 初中教育 > 滨州市沾化县富2017届九年级上段测数学试卷含答案解析
2016-2017学年山东省滨州市沾化县九年级(上)段测数学试卷一、选择题(共12小题,每小题3分,满分36分)1.下列方程,是一元二次方程的是()①3x2+x=20,②2x2﹣3xy+4=0,③x2﹣=4,④x2=0,⑤x2﹣+3=0.A.①②B.①②④⑤C.①③④D.①④⑤2.如果关于x的一元二次方程k2x2﹣(2k+1)x+1=0有两个不相等的实数根,那么k的取值范围是()A.k>B.k>且k≠0C.k<D.k≥且k≠03.将抛物线y=x2先向左平移1个单位,再向下平移2个单位得到的抛物线是()A.y=(x+1)2﹣2B.y=(x﹣1)2+2C.y=(x﹣1)2﹣2D.y=(x+1)2+24.抛物线y=﹣2x2+1的对称轴是()A.直线B.直线C.y轴D.直线x=25.用配方法解一元二次方程x2﹣6x﹣10=0时,下列变形正确的为()A.(x+3)2=1B.(x﹣3)2=1C.(x+3)2=19D.(x﹣3)2=196.一元二次方程x2﹣2x+3=0根的情况是()A.没有实数根B.只有一个实数根C.有两个相等的实数根D.有两个不相等的实数根7.一元二次方程x2﹣2x=0的根是()A.x1=0,x2=﹣2B.x1=1,x2=2C.x1=1,x2=﹣2D.x1=0,x2=28.对于二次函数y=(x﹣1)2+2的图象,下列说法正确的是()A.开口向下B.对称轴是x=﹣1C.顶点坐标是(1,2)D.与x轴有两个交点9.已知二次函数y=2(x﹣3)2+1.下列说法:①其图象的开口向下;②其图象的对称轴为直线x=﹣3;③其图象顶点坐标为(3,﹣1);④当x<3时,y随x的增大而减小.则其中说法正确的有()A.1个B.2个C.3个D.4个10.顶点为(﹣6,0),开口向下,形状与函数y=x2的图象相同的抛物线所对应的函数是()A.y=(x﹣6)2B.y=(x+6)2C.y=﹣(x﹣6)2D.y=﹣(x+6)211.在同一直角坐标系中,一次函数y=ax+c和二次函数y=a(x+c)2的图象大致为()A.B.C.D.12.若二次函数y=ax2+bx+a2﹣2(a,b为常数)的图象如图,则a的值为()A.﹣2B.﹣C.1D.二.填空:(每小题4分,共24分)13.关于x的一元二次方程(m﹣2)x2+3x+m2﹣4=0有一个解是0,则m=.14.已知点A(4,y1),B(,y2),C(﹣2,y3)都在二次函数y=(x﹣2)2﹣1的图象上,则y1、y2、y3的大小关系是.15.要组织一次排球邀请赛,参赛的每两个队之间都要比赛一场.根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,设比赛组织者应邀请x个队参赛,则x满足的关系式为.16.若方程(m+2)x|m|+3mx+1=0是关于x的一元二次方程,则m=.17.已知y=﹣x2+2与x轴交于A,B两点,与y轴交于C点,则△ABC的面积为.18.若抛物线y=ax2+k(a≠0)与y=﹣2x2+4关于x轴对称,则a=,k=.三.解答题:(共60分)19.运用适当的方法解方程(1)(x﹣3)2=25;(2)x2﹣x﹣1=0;(3)x2﹣6x+8=0;(4)(2x﹣3)2=5(2x﹣3).20.已知关于x的方程x2+ax+a﹣2=0(1)若该方程的一个根为1,求a的值及该方程的另一根;(2)求证:不论a取何实数,该方程都有两个不相等的实数根.21.某商品的进价为每件30元,现在的售价为每件40元,每星期可卖出150件.市场调查反映:如果每件的售价每涨1元(售价每件不能高于45元),那么每星期少卖10件.设每件涨价x元(x为非负整数),每星期的销量为y件.(1)求y与x的函数关系式及自变量x的取值范围;(2)如何定价才能使每星期的利润最大且每星期的销量较大?每星期的最大利润是多少?22.已知二次函数y=a(x﹣h)2,当x=2时有最大值,且此函数的图象经过点(1,﹣3),求此二次函数的关系式,并指出当x为何值时,y随x的增大而增大.23.如图,有一面积是150平方米的长方形鸡场,鸡场的一边靠墙(墙长18米),墙对面有一个2米宽的门,另三边用竹篱笆围成,篱笆总长33米,求:鸡场的长和宽各为多少米?24.如图,已知等边△ABC,以边BC为直径的半圆与边AB,AC分别交于点D、E,过点D作DF⊥AC于点F,(1)判断DF与⊙O的位置关系,并证明你的结论;(2)过点F作FH⊥BC于点H,若等边△ABC的边长为8,求AF,FH的长.2016-2017学年山东省滨州市沾化县九年级(上)段测数学试卷参考答案与试题解析一、选择题(共12小题,每小题3分,满分36分)1.下列方程,是一元二次方程的是()①3x2+x=20,②2x2﹣3xy+4=0,③x2﹣=4,④x2=0,⑤x2﹣+3=0.A.①②B.①②④⑤C.①③④D.①④⑤【考点】一元二次方程的定义.【分析】本题根据一元二次方程的定义解答,一元二次方程必须满足三个条件:(1)是整式方程;(2)只含有一个未知数;(3)未知数的最高次数是2.【解答】解:①符合一元二次方程的条件,正确;②含有两个未知数,故错误;③不是整式方程,故错误;④符合一元二次方程的条件,故正确;⑤符合一元二次方程的条件,故正确.故①④⑤是一元二次方程.故选D.2.如果关于x的一元二次方程k2x2﹣(2k+1)x+1=0有两个不相等的实数根,那么k的取值范围是()A.k>B.k>且k≠0C.k<D.k≥且k≠0【考点】根的判别式.【分析】若一元二次方程有两不等根,则根的判别式△=b2﹣4ac>0,建立关于k的不等式,求出k的取值范围.【解答】解:由题意知,k≠0,方程有两个不相等的实数根,所以△>0,△=b2﹣4ac=(2k+1)2﹣4k2=4k+1>0.又∵方程是一元二次方程,∴k≠0,∴k>且k≠0.故选B.3.将抛物线y=x2先向左平移1个单位,再向下平移2个单位得到的抛物线是()A.y=(x+1)2﹣2B.y=(x﹣1)2+2C.y=(x﹣1)2﹣2D.y=(x+1)2+2【考点】二次函数图象与几何变换.【分析】根据“左加右减,上加下减”平移规律写出平移后抛物线的解析式即可.【解答】解:抛物线y=x2先向左平移1个单位,再向下平移2个单位得到的抛物线是:y=(x+1)2﹣2.故选:A.4.抛物线y=﹣2x2+1的对称轴是()A.直线B.直线C.y轴D.直线x=2【考点】二次函数的性质.【分析】已知抛物线解析式为顶点式,可直接写出顶点坐标及对称轴.【解答】解:∵抛物线y=﹣2x2+1的顶点坐标为(0,1),∴对称轴是直线x=0(y轴),故选C.5.用配方法解一元二次方程x2﹣6x﹣10=0时,下列变形正确的为()A.(x+3)2=1B.(x﹣3)2=1C.(x+3)2=19D.(x﹣3)2=19【考点】解一元二次方程﹣配方法.【分析】方程移项变形后,利用完全平方公式化简得到结果,即可做出判断.【解答】解:方程移项得:x2﹣6x=10,配方得:x2﹣6x+9=19,即(x﹣3)2=19,故选D.6.一元二次方程x2﹣2x+3=0根的情况是()A.没有实数根B.只有一个实数根C.有两个相等的实数根D.有两个不相等的实数根【考点】根的判别式.【分析】求出△的值,再判断即可.【解答】解:x2﹣2x+3=0,△=(﹣2)2﹣4×1×3<0,所以方程没有实数根,故选A.7.一元二次方程x2﹣2x=0的根是()A.x1=0,x2=﹣2B.x1=1,x2=2C.x1=1,x2=﹣2D.x1=0,x2=2【考点】解一元二次方程﹣因式分解法.【分析】先分解因式,即可得出两个一元一次方程,求出方程的解即可.【解答】解:x2﹣2x=0,x(x﹣2)=0,x=0,x﹣2=0,x1=0,x2=2,故选D.8.对于二次函数y=(x﹣1)2+2的图象,下列说法正确的是()A.开口向下B.对称轴是x=﹣1C.顶点坐标是(1,2)D.与x轴有两个交点【考点】二次函数的性质.【分析】根据抛物线的性质由a=1得到图象开口向上,根据顶点式得到顶点坐标为(1,2),对称轴为直线x=1,从而可判断抛物线与x轴没有公共点.【解答】解:二次函数y=(x﹣1)2+2的图象开口向上,顶点坐标为(1,2),对称轴为直线x=1,抛物线与x轴没有公共点.故选:C.9.已知二次函数y=2(x﹣3)2+1.下列说法:①其图象的开口向下;②其图象的对称轴为直线x=﹣3;③其图象顶点坐标为(3,﹣1);④当x<3时,y随x的增大而减小.则其中说法正确的有()A.1个B.2个C.3个D.4个【考点】二次函数的性质.【分析】结合二次函数解析式,根据函数的性质对各小题分析判断解答即可.【解答】解:①∵2>0,∴图象的开口向上,故本小题错误;②图象的对称轴为直线x=3,故本小题错误;③其图象顶点坐标为(3,1),故本小题错误;④当x<3时,y随x的增大而减小,正确;综上所述,说法正确的有④共1个.故选A.10.顶点为(﹣6,0),开口向下,形状与函数y=x2的图象相同的抛物线所对应的函数是()A.y=(x﹣6)2B.y=(x+6)2C.y=﹣(x﹣6)2D.y=﹣(x+6)2【考点】二次函数的性质;二次函数的图象.【分析】可设抛物线解析式为y=a(x+6)2,再由条件可求得a的值,可求得答案.【解答】解:∵顶点为(﹣6,0),∴可设抛物线解析式为y=a(x+6)2,∵开口向下,形状与函数y=x2的图象相同,∴a=﹣,∴抛物线解析式为y=﹣(x+6)2,故选D.11.在同一直角坐标系中,一次函数y=ax+c和二次函数y=a(x+c)2的图象大致为()A.B.C.D.【考点】二次函数的图象;一次函数的图象.【分析】本题形数结合,一次函数y=ax+b,可判断a、c的符号;根据二次函数y=a(x+c)2的图象位置,可得a,c.经历:图象位置﹣系数符号﹣图象位置.【解答】解:A、函数y=ax+c中,a>0,c>0,y=a(x+c)2中,a<0,c<0,故A错误;B、函数y=ax+c中,a<0,c>0,y=a(x+c)2中,a>0,c>0,故B正确;C、函数y=ax+c中,a>0,c<0,y=a(x+c)2中,a>0,c>0,故C错误;D、函数y=ax+c中,a<0,c>0,y=a(x+c)2中,a>0,c<0,故D错误.故选:B.12.若二次函数y=ax2+bx+a2﹣2(a,b为常数)的图象如图,则a的值为()A.﹣2B.﹣C.1D.【考点】二次函数图象与系数的关系.【分析】由抛物线与y轴的交点判断c与0的关系,进而得出a2﹣2的值,然后求出a值,再根据开口方向选择正确答案.【解答】解:由图象可知:抛物线与y轴的交于原点,所以,a2﹣2=0,解得a=±,由抛物线的开口向上所以a>0,∴a=﹣舍去,即a=.故选D.二.填空:(每小题4分,共24分)13.关于x的一元二次方程(m﹣2)x2+3x+m2﹣4=0有一个解是0,则m=﹣2.【考点】一元二次方程的解.【分析】一元二次方程的解就是能够使方程左右两边相等的未知数的值.即用这个数代替未知数所得式子仍然成立.将x=0代入方程式即得.【解答】解:把x=0代入一元二次方程(m﹣2)x2+3x+m2﹣4=0,得m2﹣4=0,即m=±2.又m﹣2≠0,m≠2,取m=﹣2.故答案为:m=﹣2.14.已知点A(4,y1),B(,y2),C(﹣2,y3)都在二次函数y=(x﹣2)2﹣1的图象上,则y1、y2、y3的大小关系是y3>y1>y2.【考点】二次函数图象上点的坐标特征.【分析】分别计算出自变量为4,和﹣2时的函数值,然后比较函数值得大小即可.【解答】解:把A(4,y1),B(,y2),C(﹣2,y3)分别代入y=(x﹣2)2﹣1得:y1=(x﹣2)2﹣1=3,y2=(x﹣2)2﹣1=5﹣4,y3=(x﹣2)2﹣1=15,∵5﹣4<3<15,所以y3>y1>y2.故答案为y3>y1>y2.15.要组织一次排球邀请赛,参赛的每两个队之间都要比赛一场.根据场地和时间等条件,赛程计划安排7天,每天安排4场比赛,设比赛组
本文标题:滨州市沾化县富2017届九年级上段测数学试卷含答案解析
链接地址:https://www.777doc.com/doc-7543363 .html